

Borovski A.1,2,

Postylyakov O.¹, Ivanov V.³, Kanaya Y.⁴, Elokhov A.¹, Borodko S.K.²

¹A.M. Obukhov Institute of Atmospheric Physics RAS, Moscow,

² National Ozone Monitoring Research and Educational Center of Belarussian State University, Minsk

³A. N. Sevchenko Institute of Applied Physical Problems of Belarusian State University, Minsk,

Penartment of Environmental Geochemical Cycle Research, Japan Agency for Marine, Earth Science and Technology, Yo

⁴Department of Environmental Geochemical Cycle Research, Japan Agency for Marine-Earth Science and Technology, Yokohama

Measurements of formaldehyde integral content in troposphere at Moscow Region

Important detector of:

- a) volatile organic compounds (VOCs) emissions;
- b) photochemical activity in the atmosphere.

Sources

- a) direct emissions:
- biomass burning;
- fossil fuel burning;
- b) indirect emissions by oxidation of:
- methane (source of the background HCHO);
- VOC (tropospheric emissions).

Sinks

Oxidation by free radical (OH, HO_2); photolysis (<400 nm).

HCHO life-time in the atmosphere is about from 1 to 4 hours.

Typical total content 10^{16} mol/cm² Remote background regions 0.2×10^{16} mol \times cm⁻² Concentration (3-4 ppbv)

Formaldehyde (HCHO)

JAMSTEC MAXDOAS mounted at Zvenigorod in 2008.
Included also in MADRAS network*

*Kanaya, Y. et al. Long-term MAX-DOAS network observations of NO2 in Russia and Asia (MADRAS) during the period 2007–2012: instrumentation, elucidation of climatology, and comparisons with OMI satellite observations and global model simulations, Atm. Chem. Physics, 14, 7909-7927, doi:10.5194/acp-14-7909-2014 (2014).

A.M. Obukhov IAP DOAS network

- Measurement technique: MAX-DOAS.
- 6 off-axis: 3, 5, 10, 20, 30 and 90 degrees.
- 6-spectra series is registering during 30 min.
- Thermostat: summer +40...45°, winter +20...+25°
- UV-Vis spectra region (223-528 nm)
- Linear CCD, 3648 elements
- FWHM ~0.5 HM

$$DS^{(i)}: \sum_{k} \left[\ln \left(\frac{I_{REF} \left(\lambda_{k} \right)}{I_{\alpha} \left(\lambda_{k} \right)} \right) - \sum_{i} \sigma_{i} \left(\lambda_{k} \right) DS_{\alpha}^{(i)} \right]^{2} \rightarrow \min$$

$$S_{\alpha} = DS_{\alpha} + S_{REF} \quad (1)$$

$$S_{\alpha} = \int_{h_0}^{h_1} a_{\alpha}(h) N(h) dh = \mathbf{V} \cdot \int_{h_0}^{h_1} a_{\alpha}(h) n(h) dh \equiv \mathbf{V} \cdot A_{\alpha} \quad (2)$$

We use non-zenith measurements for S_{REF} estimation only

(1) and (2) together for any pair of α for whole dataset:

$$\begin{cases} DS_{\alpha 1} + S_{REF} = V \cdot A_{\alpha 1} \\ DS_{\alpha 2} + S_{REF} = V \cdot A_{\alpha 2} \end{cases} \rightarrow S_{REF} = \frac{DS_{\alpha 1}A_{\alpha 2} - DS_{\alpha 2}A_{\alpha 1}}{A_{\alpha 1} - A_{\alpha 2}}$$

S – slant column density of specie; DS - differential S; S_{REF} – S during reference spectrum registration; α – elevation angle; A – air mass factor; a(h) – layer air mass factor, n(h) and N(h) – normalized and real vertical distribution of specie in the atmosphere; I and I_{REF} – signal and reference spectra; σ – absorption cross-section; V – vertical column density

HCHO retrieval

Air-mass factor calculating

$$V = \frac{S}{A}$$
 Introduce K-

$$K \equiv \frac{1}{A}$$

$$V = S \cdot K$$

Introduce K-value:
$$K \equiv \frac{1}{A}$$
 $V = S \cdot K$ $\varepsilon_{VCD}^{(AMF)} = S \cdot \varepsilon_{K}$

K-value used for retrieval is estimated as

$$\overline{K} = \frac{K_{\text{max}} + K_{\text{min}}}{2}$$

$$K_{\text{max}} = \max(K_n), K_{\text{max}} = \max(K_n), n = \overline{0...N}$$

 K_n – inverted RTM calculation results for different scenarios

Error related to uncertainty of RTM parameter estimated as:

$$\varepsilon_K = \left(\frac{K_{\text{max}} - K_{\text{min}}}{K_{\text{max}} + K_{\text{min}}}\right) \cdot 100, [\%]$$

 ε_{K} up to 1% during winter or summer (known albedo) ε_K up to 10% during demi season (unknown albedo)

Analysis of error caused by AMF parameter uncertainties

Thermostat mode in 2010 year

We used single reference spectra for each thermostat mode for the HCHO retrieval

Parameter	Specification			
Fitting interval	336.5-359 nm			
Cross-sections				
НСНО	Meller and Moortgat (2000), 293°K			
О3	Bogumil et al. (2003), 223, I ₀ -corrected			
NO2	Vandaele et al. (1996), 298∘K, I ₀ -corrected			
BrO	Fleischmann et al. (2004), 223∘K			
04	Hermans et al. (2003)			
Ring effect	QDoas Software			
Closure term	Polynomial of order 3 (corresponding to 4 coefficients)			

HCHO retrieval was carried out using own-developed software

DOAS settings for the HCHO DSCDs retrieval are almost the same as used at CINDI campaign (G. Pinardi et al., 2013).

- ➤ We do not use the additional O₃ cross-section at the 243 K.
- ➤ Ring cross-section is generated by QDoas software (Fayt C. et al., 2012).
- > Other settings correspond to the same of CINDI.

DOAS settings

DateTime: from Dec 2009 to Apr 2013

Dispersion of DOAS residual $\sigma^2 \le 1.5 \times 10^{-5}$

SZA ≤ 83.5°

4318 data points left

Cloud influence

- Cloud coverage ≤ 20%
 (METAR database of Vnukovo airport, 30 km from measurement site)
- 2. Color index ≤ Model color index + 0.2

Color index CI=I(470 nm)/I(430 nm)

HCHO DSs on 13 July is larger than ones on 12 July

13 July: east wind directions prevailed 12 July: non-east wind directions prevailed

HCHO VCD: Individual results

HCHO DSs on 13 July is larger than ones on 12 July

13 July: east wind directions prevailed 12 July: non-east wind directions prevailed

Moscow megacity influence: individual measurements

11/18

HCHO DSs on 13 July is larger than ones on 12 July

13 July: east wind directions prevailed 12 July: non-east wind directions prevailed

- 13 July air masses formed in Moscow comes to Zvenigorod during 3-4 hours. This time is comparable with HCHO life-time (1-4 hours).
- ➤ 12 July air masses formed in supposable free of pollutant regions.

Moscow megacity influence: individual measurements

HCHO total column measurements at Zvenigorod

Temperature trend in HCHO data

HCHO and air temperature variations

Formaldehyde measurements at Zvenigorod Scientific Station

Linear approximation of HCHO VCD temperature dependence at different wind directions (HCHO=A+B×T).

Wind direction	Count	Intercept A, 10 ¹⁶ mol cm ⁻²	Error of intercept A*), 10 ¹⁵ mol cm ⁻²		Error of gradient B*), 10 ¹⁴ mol cm ⁻² °C ⁻¹
North	2377	1.175	0.132	9.292	0.757
East	1329	1.501	0.180	9.323	0.894
South	1598	1.509	0.120	7.543	0.682
West	1363	0.655	0.098	8.918	0.651

Formaldehyde measurements at Zvenigorod Scientific Station

*) 95% confidential interval.

- Beginning from 2008 the MAX-DOAS measurements in the visible and UV spectral regions are performed at Zvenigorod Scientific Station, Moscow Region, Russia. We developed a new algorithm for retrieval of HCHO using MAX-DOAS or ZDOAS measurements. The current version of the algorithm uses information on the surface albedo and the height of the atmospheric boundary layer provided by other measurements.
- We presented the first measurements of the formaldehyde total content in the atmosphere in Russia. Analyzed observations cover 2010-2012, including extremely hot summer.
- The average HCHO vertical column density observed at the east winds is larger than one at the west winds. **Moscow megapolis** influence on air quality at Zvenigorod causes the observed difference of about **0.85×10**¹⁶ mol cm⁻² between these values. This difference slightly depends on the air temperature and the season.
- A **temperature effect** is noticeable in the HCHO VCD. Our data show statistically significant positive temperature effect in HCHO for the background and polluted conditions for temperatures from -5°C to +35°C. The temperature trend in HCHO data at Zvenigorod Scientific Station varies between 7.5×10¹⁴ and 9.3×10¹⁴ mol×cm⁻² °C⁻¹ for all wind directions. The increase of the HCHO VCD with the increase of the air temperature can be caused by the HCHO formation from non-methane biogenic VOCs (mainly isoprene) for which more emission is expected at higher temperatures, and by growth of areas of forest and turf fires.

Conclusion

Alexander N. Borovski
A.M. Obukhov Institute of atmospheric physics RAS, Moscow alexander.n.borovski@gmail.com

THANK YOU FOR YOUR ATTENTION!