GOME-2 HCHO Air Mass Factors

Algorithm Development

Michael Barkley, Will Hewson* & Hartmut Bösch Earth Observation Science Group, University of Leicester, UK

Acknowledgments

Special thanks to:

- Gonzalo Gonzalez Abad & Thomas Kurosu*
 Atomic and Molecular Physics Division, Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts, USA.
 * Now at JPL, NASA, USA.
- Robert Spurr
 RT Solutions Inc, Cambridge, Massachusetts, USA.
- Isabelle De Smedt BIRA, Belgium.
- Gijsbert Tilstra KMNI, Netherlands.

Our focus:

GOME-2 (on Met-Op A)

Spectral range: 240–790 nm

- Spectral resolution: 0.24-0.5 nm

- Footprint: 80×40 km²

- Sun-synchronous orbit

Local equator crossing time 09:30

Formaldehyde (HCHO)

- Main source: oxidation of nmVOCs
- VOC sources:

Biogenic: \sim 1150 Tg C yr $^{-1}$ Anthropogenic: \sim 150 Tg C yr $^{-1}$ Pyrogenic: \sim 50 Tg C yr $^{-1}$

- HCHO is short-lived (hours)
- Useful proxy species for inferring surface emissions (e.g, isoprene)

Satellite Air Mass Factors

- Definition: AMF = slant column density / vertical column density
- AMF converts retrieved trace gas slant columns to geophysical quantity
- Accurate AMFs are important to improve retrieved measurements
- A 'good' estimate of AMF errors is needed to properly calculate the overall retrieval uncertainty, which is important for:
 - Weighting observations when gridding/averaging
 - o Measurement validation & model comparisons
 - Determining errors of inferred quantities (e.g., surface emissions)
- Palmer et al. [2001] developed a widely used method for calculating AMFs:

$$AMF(\lambda) = AMF_G \int_0^{TOA} S(\sigma) w(\lambda, \sigma) d\sigma$$

- o $w(\lambda,\sigma)$ are scattering weights that represent the sensitivity of the backscattered radiance to the absorber abundance at each altitude
- \circ $S(\sigma)$ is a normalised shape factor that describes the trace gas vertical distribution
- Final AMF is sum of reflectivity weighted clear and cloudy pixel sub-scene:

$$AMF(\lambda) = \frac{AMF_{clr} R_{clr} (1 - f) + AMF_{cld} R_{cld} f}{R_{clr} (1 - f) + R_{cld} f}$$

GOME-2 HCHO vertical column retrieval

Spectral Fitting

- See Hewson et al., AMT, 2013.
- Two stage fitting (BrO pre-fit)

Parameter	Settings
Fit window	BrO 328.5 - 359 nm [Theys, 2010]
	HCHO 328.5 - 346 nm [De Smedt, 2011]
Polynomial	5 th order
Cross sections	BrO (223 K) [Fleischmann et al., 2004]
	HCHO (298 K) [Meller & Moortgat, 2000]
	NO ₂ (220 K) [Vandaele et al. 1998]
	O ₃ (228 and 243 K) [Malicet et al., 1995]
	I_0 corrected to 0.8×10^{19}
Linear offset	1 st order
Ring	Vountas et al. [1998]
Undersampling	Chance et al. [2005]
Scan correction	Eta & zeta polarisation correction [EUMETSAT 2011]
Slit function	Siddans et al. [2006]
Solar reference	GOME-2 daily solar mean reference
I ₀ calibration	Caspar et al. [1997]

AMF

- See Hewson et al., AMTD, 2015.
- Use LIDORT RT code
- Calculate AMF at 340 nm
- Calculate AMF for each scene
 No look-up table
- Aerosol types: black carbon, organic carbon, dust, sulphate, sea salt

	Baseline AMF algorithm
СТМ	GEOS-Chem global 4°×5° grid
A Priori Profiles	Daily profiles (HCHO & AOD)
	- selected using centre coordinates
Surface Pressure	GEOS-Chem (4°×5°)
Surface Albedo	TOMS monthly climatology
	- Herman & Celarier [1997]
	- regridded to $4^{\circ} \times 5^{\circ}$ ($\lambda \sim 360$ nm)
Surface Elevation	n/a
LIDORT cross-sections	Fixed OMI cross section
LIDORT O ₃ profile	U.S. Standard atmosphere
Cloud Algorithm	FRESCO+

Baseline AMFs and HCHO vertical columns

- Focus on contrasting months: March and August of 2007
- Everything seems in the right place!

Updates applied

- Assessment of different GEOS-Chem chemistry transport model grid resolutions
 - Coarse: Global 4° × 5° simulation
 - \circ Medium: Global $2^{\circ} \times 2.5^{\circ}$ simulation
 - \circ 'High': Regional $0.5^{\circ} \times 0.667^{\circ}$ nested (one-way) simulation
- Area-weighting of a priori profiles to match the satellite footprint
- Application of the Zhou et al. [2009] terrain correction for surface pressure
 - o Use high resolution surface topography data to adjust coarse surface pressure
- Upgrade of surface reflectance to new GOME-2 climatology
- HCHO and O₃ absorption cross sections within LIDORT changed to match those in retrieval and adjusted to account for change of GOME-2's slit function over time and also for temperature effects
- The US Standard O₃ profile within LIDORT is replaced with TOMS v8 climatology and scaled with coincident GOME-2 total column observations

AMFs from look-up tables

- Compare baseline AMFs to previous look-up table (LUT) approach
- AMF LUT based on monthly mean GEOS-Chem profiles from 4°×5° simulation

Importance of CTM resolution

Impact of CTM resolution

AMF differences greater at higher resolution simulations

Area weighting of model profiles

AW of profiles has small effect CTM spatial resolution more important

- AW mean surface pressure calculated and used to construct common pressure profile
- All profiles interpolated onto pressure profile before AW applied
- Total AOD is conserved by rescaling interpolated profiles

Surface Pressure Correction

Method:

- Utilise GMTED2010 data has a resolution of 0.0083°×0.0083°
- Adjust the area weighted mean surface pressure using GMTED2010 surface topography via Zhou et al. [2009] method
- Construct new pressure profile
- Area weighted model profiles interpolated on to new vertical pressure grid
- Over **Amazon**, impact of correction on AW $4^{\circ} \times 5^{\circ}$ profiles is **small** $\pm 5\%$
- Impact on AW profiles from GEOS-Chem $0.5^{\circ} \times 0.667^{\circ}$ simulation is even smaller

Importance of Surface Reflectance

13 / 23

Impact of Surface Reflectance

- Use of TOMS reflectance is mainly historical (GEOS-Chem heritage)
- Now implement GOME-2 mode LER data at 340 nm (AW, time interpolated)
- Between 80–90% of locations have AMF increased by 0–20% (mean 4%)

Combined effect of all AMF updates

- $-\,$ Use of GOME-2 cross-sections is small (uniform global decrease of 0-2%)
- Impact of TOMSv8 ozone climatology is also small ($\pm 2\%$)
- Median AMF difference is 3.5%, with 75% locations having an AMF 0-10% larger

AMF Error Assessment

Apply all updates and calculate AMF errors for each scene using :

$$\sigma_{\mathsf{AMF}}^2 = \left(\frac{\partial \mathsf{AMF}}{\partial \mathsf{A_s}} \sigma_{\mathsf{A_s}}\right)^2 + \left(\frac{\partial \mathsf{AMF}}{\partial \mathsf{CF}} \sigma_{\mathsf{CF}}\right)^2 + \left(\frac{\partial \mathsf{AMF}}{\partial \mathsf{CTP}} \sigma_{\mathsf{CTP}}\right)^2 + \left(\frac{\partial \mathsf{AMF}}{\partial \mathsf{S}} \sigma_{\mathsf{S}}\right)^2$$

- Key point: full radiative transfer calculation to determine sensitivity
- Assigned uncertainties: σ_{A_s} from GOME-2 product; $\sigma_{CTP}=60$ hPa; $\sigma_{CF}=0.05$
- For σ_S we scale HCHO profile by +25% below and two model layers above peak layer, and by -25% for remaining layers above (this reflects likely profile uncertainty in tropics)
- Overall, median AMF errors are about 50–60%

Seasonal variation in AMF

- AMF errors driven by HCHO profile uncertainty (in the algorithm...)
- If HCHO profile scaled by 10% in error calculation, median total error is about 30%

Summary

	Baseline AMF algorithm	Updated AMF algorithm
СТМ	GEOS-Chem global 4°×5° grid	GEOS-Chem global 2°×2.5° grid
A Priori Profiles	Daily profiles (HCHO & AOD)	Daily profiles (HCHO & AOD)
	- selected using centre coordinates	- area-weighted mean over footprint
Surface Pressure	GEOS-Chem (4°×5°)	GEOS-Chem (2×2.5°)
		- adjusted by area-weighted mean elevation
Surface Albedo	TOMS monthly climatology	GOME-2 monthly climatology
	- Herman & Celarier [1997]	- Tilstra et al. [2014]
	- regridded to $4^{\circ} \times 5^{\circ}$ ($\lambda \sim 360$ nm)	- default $1.0^\circ imes 1.0^\circ (\lambda = 340 \text{ nm})$
		- area-weighted & time interpolated
Surface Elevation	n/a	GMTED2010 (0.0083×0.0083°)
LIDORT cross-sections	Fixed OMI cross section	Orbit specific GOME-2
LIDORT O ₃ profile	U.S. Standard atmosphere	Monthly & latitudinal TOMS v8 climatology
		- scaled to coincident GOME-2 total ozone observations
Cloud Algorithm	FRESCO+	FRESCO+

Can use GEOS-Chem nested $0.5^{\circ} \times 0.667^{\circ}$ simulation for the Amazon

Median AMF difference is 3.5%

Some issues that need working on:

- Different reflectances in FRESCO+ which uses MERIS black sky albedo
- Different topography in FRESCO+ which uses GTOPO30
- Explicit aerosol correction may not be valid, as presence of aerosols maybe partly compensated by cloud algorithm
- Other instruments? GOME & SCIAMACHY (yes), OMI (possibly), TROPOMI (forget it)
- Other gases (e.g., NO₂, SO₂)? Yes.

Lastly

- GOME-2 HCHO vertical columns require validation
 We would like to collaborate with MAX-DOAS groups who have
 HCHO measurements
- Upcoming 12 month PDRA position within EOS Group Evaluating/updating retrieval and analysing HCHO data Contact: Michael Barkley (mpb14@le.ac.uk) or Hartmut Bösch (hb100@leicester.ac.uk)

Cloud Distributions

March 2007 - Cloud fraction

March 2007 - Cloud top height

August 2007 - Cloud fraction

FRESCO+ cloud fraction [-]						
0.00	0.10	0.20	0.30	0.40		

August 2007 - Cloud top height

	FRESCO+ cloud top height [hPa]						
200.00	400.00	600.00	800.00	1000.00			

OMI Surface Reflectance

TOMSv8 Ozone

