Disturbed Space weather | Ca | U | S | e | S | |----|---|---|---|---| | | | | | | | a | uses | Solar flares | Proton events | Coronal Mass Ejections | Coronal Holes | |---|-------------|--|---|---|---------------| | | Arrival | Immediately (8 min) | 15 min to a few hours | 20 to 72+ hours | 2 to 4 days | | | NOAA scales | R1 (minor) => R5 (extreme)
R = Radio Blackout | S1 (minor) => S5 (extreme)
S = Solar Radiation Storm | G1 (minor) => G5 (extreme) G = Geomagnetic Storm | | | | Parameter | M1 => > X20 | Pfu (>10MeV): 10 => 10 ⁵ | Kp = 5 => Kp = 9 | | | | Duration | Minutes to hours | Hours to days | Days | | | | Protection | Earth's atmosphere | Earth's magnetic field | Earth's magnetic field | | | Radio communications | Satellites | Satellites | | |---------------------------|--|--------------------------------|--| | (SID, short wave fadeout) | (SEE, solar arrays, ageing, star trackers) | (Orientation, drag, charging) | | | Radar interference | Astronauts & Airplanes | Aurora | | | | (Radiation Dose) | | | | Navigation & Airplanes | Communication/Navigation | Communication/Navigation | | | (GPS, radar) | | | | | | Ground Level Enhancement | Electrical Currents (GIC) | | | | | (Long conductors, power grids, | | | | | pipelines) | | | Storm Type | Travel time | Physical Impact | Technological Impact | | |-------------------|-------------------|---|---|--| | Geo-magnetic | 18-96h | Geomagnetic induced currents increased ionisation in ionosphere heating in the thermosphere | Power grid outages, etc GNSS, HF comms Satellite and other hardware damage (eg surface charging) Satellite orbits (drag, collision risk) HF comms | | | Charged particles | 10mins
– 1 day | increased radiation levels damage to sensitive electronics increased ionisation in ionosphere | Radiation health hazard (astronauts, aircrew) Satellite heating and instrument noise, avionics, digital chips as above - HF comms out for up to few days in polar regions | | | Solar flares | 8mins | HF radio signal interference heating in the thermosphere | HF comms (~mins-hrs, sunlit side) As above | | ## ANNEX D: Solar phenomena and their impacts ## Potential Impacts of a Solar Storm on Earth Solar flare Radio emission , Charged particles **Electronics and solar** cells damage Communication blackout and elevated radiation exposure for Aurora crew and borealis passengers Ionospheric pulsations **GPS Electricity grid disruption** Radio waves **Navigation** disturbances disruption 06 Pipeline damage Sun and Earth are shown to approximate scale, but distance is not to scale.