caeleste

CCD and CMOS: A journey through the past and the future

Ben De Brabanter, Jeroen Hoet, Jan Vermeiren

Caeleste, Belgium

- Caeleste company introduction
- The Historical track: towards CCD
- The Present and the future: CMOS and the application broadening

Caeleste's mission

caeleste

Be the supplier of beyond state-of-the-art

custom-designed CMOS image sensors

3 Caeleste Confidential | Secret

Imaging the

Mass spectrometer of the ROSINA/DFMS Today resting on the surface of Comet

67P/Churyumov-Gerasimenko

... very far away

... very large

4096 x 4096 pixels 70mm sensor diagonal

... very small

Fly neuron 8k x 8k TEM

... invisible

Color X-ray of breast cancer

Expertise through people and collaboration

Stable growth

Founded in 2006 Owned by founders & employees 20% CAGR₁₅₋₂₀

Expertise

45+ Employees 13+ nationalities 12+ tape-outs per year

Collaboration

University collaboration 100+ peer reviewed publications Caeleste University

Technology

15 patents granted2 patents pending

Expertise in different applications

caeleste 🔵

- Caeleste company introduction
- The Historical track: towards CCD
 - Why imaging
 - The CCD precursors
 - The CCD era
 - The CCD limitations
- The Present and the future: CMOS and the application broadening

Humans want to preserve

Imaging in the Visible range

caeleste 🔵

Very common

- Our eye is nicely matched to the emitted radiation of the sun
- Imaging reflected sunlight
 - Camera's can readily capture light and make images

The very start of electronic imaging

The onsets of integration: the MOS capacitor

caeleste

Gate Voltage (V)

The CID device

CHARGE COUPLED AND CHARGE INJECTION DEVICE PERFORMANCE

1976

TRADEOFFS

R. D. Baertsch*

2022: still used by Thermofisher for camera's in a high radiation environment

© Caeleste 2022 04 22 © Caeleste 2022 04 22 Fig. 4 - Further evaluation is required with this 244 x 248 CID imager.

The Bucket Brigade Device

caeleste 🔵

Advantages:

- Single poly gate
- Simple process

Disadvantages

- Not self-aligned
- Transfer losses (charge retention)

Used as delay lines:

Topics

- Caeleste company introduction
- The Historical track: towards CCD
 - Why imaging
 - The CCD precursors
 - The CCD era
 - The CCD limitations
- The Present and the future: CMOS and the application broadening

The introduction of the CCD

1969: Boyle & Smith: CCD principle 1970 – 1972: Michael Tompsett: 1 st image sensors 1975: 1st commercial product by Eastman Kodak

caeleste

© Caeleste 2022 04 22

14

From surface channel to Buried channel

caeleste

• Higher fringe fields

Disadvantages

Lower charge storage

CCD architectures

- Astronomy
- Slow scan applications
- Shuttered applications
 - Still picture

Frame transfer CCD

- Life recording
- Easiest architecture
- Some motion blur
- Bright spot impact

Interline transfer CCD

- Life recording
- More complicated architecture
- Real global shutter
- No bright spot impact

16

• When considering an image sensor, the following performance parameters are key:

caeles

- Spectral response: collected electrons / incident photons or [A/W]
- Full well charge: related issue: photon shot noise Signal to Noise ratio close to saturation –
- Noise in dark: or Dynamic range what is the minimal visible signal?
- Dark current: how long can we integrate before we influence Full well or noise
- Power Current Voltage

Some derivative parameters:

- Driving voltage signal height
- Voltage + oxide / stack thickness: charge density
- Charge to voltage conversion gain

Topics

- Caeleste company introduction
- The Historical track: towards CCD
 - Why imaging
 - The CCD precursors
 - The CCD era
 - The CCD limitations
- The Present and the future: CMOS and the application broadening

Some calculation examples

Buried Channel CCD

- Implant condition: [1.E+12 2. E+12 cm-2]
- Useful "dose" = 20 %: [0.2 0.4E+12 cm-2] or [2000 4000 e-/μm2]
- Pixel size: 15 μ m \rightarrow storage area = 100 μ m2 \rightarrow [200 400 ke-] full well \rightarrow shot noise: 447 e-rms \rightarrow 9 bit
- Pixel size: 5 μ m \rightarrow storage area = 7.5 μ m2 \rightarrow [15 30 ke-] full well \rightarrow shot noise: 112 e-rms \rightarrow 7 bit
- Pixel size: $3 \mu m \rightarrow$ storage area = $3.0 \mu m^2 \rightarrow [6 12 \text{ ke-}]$ full well \rightarrow shot noise: 77 e-rms \rightarrow 6 bit

Туре	Pixel	Full well	Noise	Format	Frame rate	Туре
KAF-16803	9*9 μm2	100 ke-	9e-rms	4k * 4k	1.6 Fps	Full frame
KAF-08051	5.5*5.5 μm2	20 ke-	10 e-rms	3k*2k	16 Fps	Interline
KAF-50140	4.5*4.5 μm2	13 ke-	13 e-rms	10k*4k	4 Fps	Interline
ICX829AL	8.2*8.4 μm2	50 ke-	10 e-rms	750*580	50Fps	Interline
ICX445	3.75*3.75 μm2			1.4*1k	20 Fps	Interline

Transition to CMOS image sensors

CCD

Dedicated process - expensive

Mainstream process – Low-cost

Topics

- Caeleste company introduction
- The Historical track: towards CCD
- The Present and the future: CMOS and the application broadening
 - Basic CMOS architectures and HDR
 - CMOS tendencies and diversification
 - Non-visible imaging

CMOS sensor basics

b) 4T Per Pixel

caeleste 🔵

During integration photocharge is accumulated in the photodiode. The TG3 gate voltage is set to the intermediate "overflow barrier" operation point. When the photodiode is too full, charge overflows to the capacitor node blue: charge fitting in the PPD

red: charge overflowing into the capacitor node.

caeleste 🔵

TG₃

CN

PPD

TG1

SN

As the photocharge of the previous integration time is now in available in the SN and the CN, if can be read out. The readout of the imager happens row-by-row or in "rolling readout". The select transistors of the rows to be read out are activated, the reset transistors are turned off, and then three voltage levels are put on the column bus: "R1", "S1" and "S2".

"R1" is reset level as present on the FD immediatedly after releasign the reset.

caeleste 🔵

Then the gate TG2 toggled off-on-off, allowing the charge in the SN to transfer to the FD.

This is the "S1" signal level, representing the "blue" charge.

Expertise in different applications

Then the Merge transistor is closed, shunting the FD and the CN. All photocharge, previously divided over the SN (blue) and the CN (red) is now reunited.

Μ

FD

Φ

CN

This signal is "S2", being the LG or high Q_{FW} signal level. We do not apply CDS on S2; still S2 is readout differentially as (S2-ref)&(ref-S2).

HDR by combining two "normal" DR ranges

This graph is the "Noise versus Signal" relation of a two range image sensor pixel, i.c. the ELFIS pixel. Each Q_{FW} range on its own has such relation. The dynamic range (DR) is defined as the ratio of the largest, near saturation, photocharge (Q_{FW}) and the noise equivalent photocharge (Q_{noise}) in the dark. When the two signals are combined into one "HDR" signal, it has such relation as well, and an overall dynamic range that is equal to the LG Q_{FW} divided by the HG Q_{noise}. High Q_{FW} range: DR=320000/50~6400:1 Low Q_{FW} range: DR=6000/6,5 ≈ 1000:1 Combination DR=320000/6,5 ≈ 93,8dB

caeleste

Topics

- Caeleste company introduction
- The Historical track: towards CCD
- The Present and the future: CMOS and the application broadening
 - Basic CMOS architectures and HDR
 - CMOS tendencies and diversification
 - Non-visible imaging

Image sensors: general evolution

Key specifications

- Frame rate
- Number of pixels
- Pixel size
- Noise
- Spectral response
- Quantum efficiency
- Full well

Resulting specifications

- Light sensitivity
- Dynamic range
- Bit depth

CITIUS, ALTIUS, FORTIUS Faster More pixels Smaller pixels

caeleste

- Lower noise floor
- Better colour / NIR /UV reproduction
- → Higher quantum efficiency
- Higher (but following the pixel size)
 - Higher sensitivity
 - Higher dynamic range
 - Mainly following dynamic range

Expertise in different applications

caeleste 🔵

© Caeleste 2022 04 22

31

Image sensors: specific evolution for scientific & Industrial caeleste

Key specifications

- Frame rate Faster Number of pixels More pixels Pixel size Smaller pixels Noise Lower noise floor Spectral response Better colour / NIR /UV / Xray / Low cost IR Quantum efficiency **Higher quantum efficiency** Full well Higher $\leftarrow \rightarrow$ Higher gain Resulting specifications **Higher sensitivity** Light sensitivity Higher dynamic range Dynamic range Bit depth Mainly following dynamic range Large format **Stitched designs**
 - Temperature range

Cooled Operation

© Caeleste 2022 04 22

32

Topics

- Caeleste company introduction
- The Historical track: towards CCD
- The Present and the future: CMOS and the application broadening
 - Basic CMOS architectures and HDR
 - CMOS tendencies and diversification
 - Non-visible imaging

Where is the light absorbed

22 April 2022

34

BSI versus FSI: QE

caeleste 🔵

BSI example

caeleste

SEM Cross Section

Why using other wavelengths

caeleste

shortwave AM

104

780

10-2

FM TV

1

radar

10-3

- Different view on objects
- Skin inspection

Visible Light wavelength (meters) - 002 600

104

infrared rays

Nanometers (nm)

ultraviolet rays

10-9

© Caeleste 2022 04 22

gamma rays

10-12

10-14

x-rays

10-10

22 April 2022

38

Special backside treatments for shallow absorption

Good surface uniformity Low scattering Very shallow back-surface field

caeleste

ELECTRIC FIELD

Why using other wavelengths

caeleste 🔵

- Different view on objects
- Xray PCB inspection

Absorption of X-rays

X-ray require heavy materials

© Caeleste 2022 04 22

42

Use of scintilators

© Caeleste 2022 04 22 Caeleste confidential

Particle absorption depth

Take-home messages

- CCD have seen an incredible growth between 1980 2010
- CCD will be gradually phased out
 - Small community
 - Technology (un)availability
 - Pixel size
 - Performance
 - Last buys are ongoing at various places
 - Last bastion: scientific imaging

• CMOS images are (becoming) mainstream

- Large Community
- Open foundry model
- High degree of integration, even 3D integration potential
- Faster read-out, lower noise
- Uniformity is becoming better