Space Weather Introductory Course

March 2023 Brussels, Belgium

Radio Astronomy & Space Weather

A. Martínez Picar, C. Marqué, and A. Gunessee

Additional help from the ROB Technical Service colleagues

Solar-Terrestrial Centre of Excellence

Solar Influences Data analysis Center

Royal Observatory of Belgium

Belgocontrol reported <u>issues</u> with a secondary A/C radar during two periods of time:

- 14:19:23–14:33:35 UT
- 14:45:52–14:49:18 UT

Belgocontrol reported <u>issues</u> with a secondary A/C radar during two periods of time:

- 14:19:23–14:33:35 UT
- 14:45:52–14:49:18 UT

Sweden: partial <u>closure of</u> <u>airspace</u>. ATC secondary surveillance radar could not display proper information to air traffic controllers

- ~ 14:19–14:34 UT
- ~ 14:47–14:50 UT

Belgocontrol reported <u>issues</u> with a secondary A/C radar during two periods of time:

- 14:19:23–14:33:35 UT
- 14:45:52–14:49:18 UT

Sweden: partial <u>closure of</u> <u>airspace</u>. ATC secondary surveillance radar could not display proper information to air traffic controllers

- ~ 14:19–14:34 UT
- ~ 14:47–14:50 UT

Norway: <u>issues</u> with SSR systems. *Ghosts* lining up in the direction of the Sun around 14:30 UT

Belgocontrol reported <u>issues</u> with a secondary A/C radar during two periods of time:

- 14:19:23–14:33:35 UT
- 14:45:52–14:49:18 UT

Sweden: partial <u>closure of</u> <u>airspace</u>. ATC secondary surveillance radar could not display proper information to air traffic controllers

- ~ 14:19–14:34 UT
- ~ 14:47–14:50 UT

Norway: <u>issues</u> with SSR systems. *Ghosts* lining up in the direction of the Sun around 14:30 UT

Greenland: issues in landing at Thule above 4000 ft with a conflicting report between an ILS localizer and the autopilot (~14:49 UT)

6

Fig. 1. Spectrograph receiver block diagram.

Radio Telescopes

Radio Telescopes Observing solar radio bursts

- Radio bursts are emitted by accelerated electrons
- Emission frequency depends on local density
- Each type has a recognizable signature in the *dynamic spectrum*
- The differences among them depend on their emission mechanism and the coronal structures where they are produced

- Noise storms producing <u>Type I</u> bursts are attributed to closed loop systems
- Storms are the only non-thermal emissions at metric wavelengths that are relatively permanent near the active regions

Solar Radio Bursts

- Generally attributed to fast electrons accelerated by the CME-driven shock wave
- Type II drift rate and selected coronal electron density model can provide an estimate of the shock wave speed

Solar Radio Bursts

- Type III burst is created by an electron beam through plasma emission
- The radio emission tracks the electron beam as it travels through the decreasing plasma density of the solar corona and solar wind

• The radio emission tracks the electron beam as it travels through the decreasing plasma density of the solar corona and solar wind

Solar Radio Bursts

- <u>Type IV</u> bursts (stationary or moving) are common in large/explosive flares
- Due to plasma or gyrosynchroton emission
- Cause: electron populations trapped in eruptive flux ropes and post-flare loops

November 4th, 2015 Combined observations (Humain + Nançay)

November 4th, 2015 Combined observations (Humain + Nançay)

Radio Sun & Space Weather Analysis of data

Observed:

- 1. interplanetary type II & type III bursts
- 2. intensity of the radio emission different for different spacecraft:
 - Strongest emission SWAVES A,
 - Type III bursts intensity stronger for SWAVES A than for SWAVES B?!

Deduced:

- 1. Flare & fast and wide CME,
- Direction of the CME propagation between SWAVES A & SWAVES B?!
 ↓More towards SWAVES A.
- 3. Back side event? Strongly southward propagating or west solar limb event?!
- 4. CME-driven interplanetary shock wave

Radio Sun & Space Weather Some tips for forecasters

- When eruptions are observed in optics, radio or X-rays, it is possible to "predict" the potential arrival of solar protons and -to some extent- their intensity and even the temporal profile
- These parameters are statistically related to the importance of the eruption and its position on the solar disk
- Radio observations are very useful for the space weather forecasting purposes because they bring a number of indications on the characteristics of the associated flare/CME event & associated shock wave.

Beamforming technique Principle

Beamforming technique Principle

Building SPADE Array Configuration

The layout of the array must provide a symmetric beam with low sidelobe levels

Building SPADE Array Configuration

The layout of the array must provide a symmetric beam with low sidelobe levels

Building SPADE Terrain preparation

Building SPADE Terrain preparation

Building SPADE Terrain preparation

First Light (not quite yet) ... but maybe it is the last appointment with the obstetrician!

Radio Telescopes Observing solar radio bursts

- Radio bursts are emitted by accelerated electrons
- The differences among them depend on their emission mechanism and the coronal structures where they are produced
- Each type has a recognizable signature in the *dynamic spectrum*
- Emission frequency depends on local density

