

Radiation studies in support of the design of space mission instruments

Neophytos Messios & Erwin De Donder

STCE Annual Meeting, 29 June 2023

ROYAL BELGIAN INSTITUTE FOR SPACE AERONOMY

RA•IASB

Outline

- A brief introduction to space radiation environments and its effects
- Performing radiation analysis for space mission instruments
- □ Study 1 Lunar XRF Spectrometer
- Study 2 Venus Spectrometer with High resolution

The space environment

Any space mission planning involves the analysis of the potentially encountered environments

Radiation environment & effects

TID: Total Ionising Dose **TNID**: Total Non-Ionising Dose **SEEs**: Single Event Effects)

Overview of relevant radiation environment for different missions and specific effects

Mission type	Effect	Space radiation environment			
		trapped protons	trapped electrons	solar particles	GCRs
LEO	TID				
	TNID				
	SEEs				
MEO	TID				
	TNID	low MEOS			
	SEEs				
GEO	TID	low energy			
	TNID	very low energy			
	SSEs				
Interplanetary	TID				
	TNID				
	SEEs				

Standardisation

European Cooperation for Space Standardization (ECSS) https://ecss.nl/

esa

ECSS standards

Standards are needed to aid the development process; ensure people work in the same way and account properly for all issues

- Space Environment ECSS-E-ST-10-04C
- Method for calculation of radiation effects and a policy for margins ECSS-E-ST-10-12C
- Spacecraft Charging (= Spacecraft Plasma Interactions) ECSS-E-ST-20-06C
- Radiation Hardness Assurance EEE Components ECSS-Q-ST-60-15C
- Handbook on Methods for Calculation of Radiation Effects ECSS-E-HB-10-12
- Q-ST-60-15c Radiation Hardness Assurance
- Others:
 - Materials
 - Human Factors

Assessing the radiation impact

Requires accurate knowledge of

- 1. external space environment
- 2. shielding effect of material

Tools - ESA's SPENVIS system

https://www.spenvis.oma.be

- Operational software with large user community
- Web interface to models of the space environment & its effects
- Developed & maintained by BIRA-IASB since 1996
- Publicly available since 1998

STUDY 1

>> Lunar XRF Spectrometer

ROYAL BELGIAN INSTITUTE FOR SPACE AERONOMY

- ESA project to develop an X-ray fluorescence (XRF) spectrometer for a lunar mission led by CSL (Belgium)
- Tasked to performed a radiation environment specification and analysis assuming the following mission profile:
 - \checkmark one year duration
 - \checkmark only lunar surface operation

Specifying the radiation environment

- Primary radiation environment specification (worst case)
 - ✓ GCR flux spectrum using **ISO standard 15390** model (solar minimum)
 - ✓ SEP fluence spectrum using the ESP (Emission of Solar Protons) model and the PSYCHIC (Prediction of Solar particle Yields for CHaracterizing Integrated Circuits) model (worst event with a 95% confidence level during 1 year of solar maximum activity)
- Additional assumptions
 - ✓ isotropic and omnidirectional flux/fluence
 - \checkmark shielding effect of the lunar body

Specifying the radiation environment

- Lunar albedo secondary particles
 - ✓ interaction of incident high-energy particles with lunar soil
 - \checkmark secondary proton, electron and neutron spectra

Omnidirectional GCR flux spectra during solar minimum (1996) at 1 AU

Secondary particle fluences generated by GCR proton interaction with the lunar surface

Modelling the lunar regolith

	Compound	%
	SiO ₂	39.9
SPENVIS material definition tool	K20	0.078
User defined materials (3)	CaO	10.7
G4_AI (AI)	Na ₂ O	0.38
G4_CARBON_DIOXIDE (c-o2) G4_Si (si) Del	0	0.352
Adding new material	$P_{2}O_{5}$	0.07
Name ^(*) : User defined SPENVIS list	S	0.12
Chemical formula: NIST pure elements NIST compounds	TiO ₂	9.6
Add	Al ₂ 0 ₃	10.9
(*) should include only letters, digits or underscores and start with a letter	Cr ₂ 0 ₃	0.46
Reset Save >>	FeO	17.7
On-Line Tool for the Assessment of	MnO	0.24
Radiation In Space (OLTARIS) – Apollo 17	MgO	9.5

Lunar soil geometry settings

SPENVIS Geant4/MULASSIS geometry

Geometry: User defined 🔀						
Shape: planar slab ~ Number of layers: 5 ~						
Layer number	Material 🧭	Thickness (unit)	Visualisation colour			
Layer 1	reg1_oltA17 ~	0.5 cm ×	grey 🗠			
Layer 2	reg2_oltA17 ~	19.5 cm ×	dark grey 🗠			
Layer 3	reg3_oltA17 ~	15 cm ×	cyan 🖂			
Layer 4	reg4_oltA17 ~	465 cm ~	dark green 🖂			
Layer 5	reg5_oltA17 ~	500 cm ×	red 🗠			
Visualisation						
Format: Virtual Reality Modelling Language (VRML) ~						
Particle tracks: Display						
Reset Save >>						

Layer	Thickness (cm)	Density (g/cm3)
1	0.5	0.6
2	19.5	1.2
3	15.0	1.5
4	465.0	2.0
5	500.0	3.4

Denisov et al., Acta Astro. 68, 1440–1447, 2011

Geant4: GEometry ANd Tracking v.4

MULASSIS: Multi-Layered Shielding Simulation

Geant4 simulations for the Moon

- Propagation of energetic particles into the lunar soil using e.g. MULASSIS or GRAS
- Calculation of deposited dose and backscattered particle spectra

A. P. Jordan et al., 43rd Lunar and Planetary Science Conference, 2012

GRAS: Geant4 Radiation Analysis for Space

Radiation analysis results

- Linear Energy Transfer (LET) flux spectra
- Total ionizing dose (TID) in silicon device (100 μm) as function of planar Al shielding (thickness ranging from 0.5 to 20 mm)

STUDY 2

Venus Spectrometer with High resolution (VenSpec-H)

© ESA / VR2Planets / DamiaBouic

ROYAL BELGIAN INSTITUTE FOR SPACE AERONOMY

- The VenSpec-H instrument is developed at BIRA-IASB
- It will be part of an ESA medium-class science mission to Venus (EnVision)
- Asked to perform radiation analysis for the main instrument and its electronic box
- Assumed mission profile (baseline launch date of 2033)
 - ✓ launch into HEO (310 100000 km, 7 deg inclination) → transfer phase
 → aero-braking phase → final orbit (220-470 km, nearly polar)
 - ✓ 4 years nominal science mission duration

Specifying the radiation environment

- Defined using SPENVIS based on the recommendations given in the ESA's EnVision Environment Specification document
- Only long-term (i.e., mission average) energetic particle spectra were considered
 - ✓ solar energetic particle environment from SAPPHIRE total fluence model at 0.74 AU over 1 solar cycle (with 7 years in solar max and 1.6 years in solar min).
 - ✓ GCR proton spectrum from ISO-15390 model with no magnetic shielding and using the solar minimum (May 1996) data as input for the solar activity data

Creating the geometry models

- This study required only a simplified geometry model for the main instrument and its electronics box
- Original models were designed using some computer-aided design (CAD) software and then converted in GDML (Geometry Description Markup Language) format

Creating the geometry models

- A hollow Al sphere (400 mm radius & 1 mm thickness) placed around the instrument to model the spacecraft shielding
- Some manual inspection & manipulation of the models
 - solving some issues related to name attributes introduced during the file conversion
 - adding box detectors to serve as scoring volumes for the simulations

Geant4 simulations

- Performed radiation analysis for selected volumes using the Geant4 Radiation Analysis for Space (GRAS) tool
 - ✓ total ionising dose (TID)
 - \checkmark total non-ionising dose (TNID)

Radiation analysis results

- Solar protons have a more prominent contribution on the expected doses while GCR protons have lower fluxes and contribute less to the estimated doses
- Nevertheless, GCR protons can penetrate deeper, interact with various components and generate significant secondary particles
- In general, the results show that the detector readout circuit and the detector array are relatively well shielded

Radiation analysis results

- Preliminary SEU analysis
 - ✓ no available info about devices to compute the SEU rate (i.e. cross sections or critical charge/LET threshold and sensitive volume dimensions)
 - ✓ general analysis → discrete set of LET values in combination with some arbitrarily chosen sensitive volumes
 - ✓ short-term upset rates (per bit per second) and long-term mission upsets (per bit)

Some final remarks...

- Good knowledge of models used and their limitations
 - ✓ SEP fluence spectra are based on probability functions that change (non-linearly) with the mission duration → Doses cannot be scaled linearly with time
- Geant4 simulations can be computationally expensive
- Such studies can help engineering teams to
 - ✓ better understand potential radiation risk due to the mission environments
 - ✓ select appropriate electronic parts for their instruments

THANK YOU! MORE INFO?

spenvis_team@aeronomie.be

Neophytos.Messios@aeronomie.be