

# SWx on military operations

Understanding, prevention, mitigation

Michaela Brchnelova

michaela.brchnelova@kuleuven.be

KU Leuven & Royal Higher Institute for Defence

STCE SWIC, 18 - 20 September, 2023



# Content

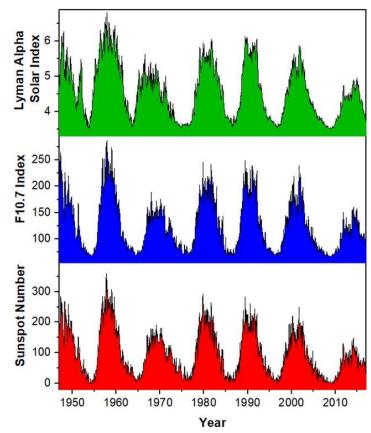
- 1. Definitions
- 2. (Radio)communication effects
- 3. Spacecraft effects
- 4. Power grid effects
- 5. Special considerations
- 6. Vulnerability of military systems
- 7. Are we ready?
- 8. Recommendations



2

**Definitions**  $\rightarrow$  Radio comm.  $\rightarrow$  Spacecraft  $\rightarrow$  Power grid  $\rightarrow$  Special considerations  $\rightarrow$  Vulnerability of systems  $\rightarrow$  Are we ready?  $\rightarrow$  Recommendations

# 1. Some definitions

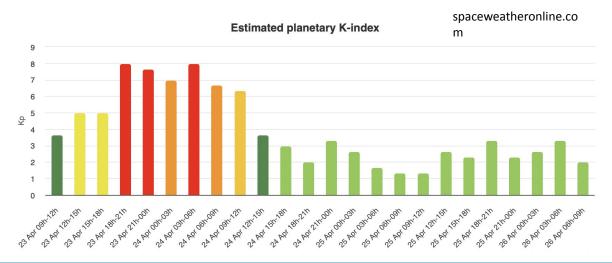



STCE SWIC, 18 - 20 September, 2023

 $\textbf{Definitions} \rightarrow \text{Radio comm.} \rightarrow \text{Spacecraft} \rightarrow \text{Power grid} \rightarrow \text{Special considerations} \rightarrow \text{Vulnerability of systems} \rightarrow \text{Are we ready?} \rightarrow \text{Recommendations} \\ \text{Singh et al. 2019} \\ \end{cases}$ 

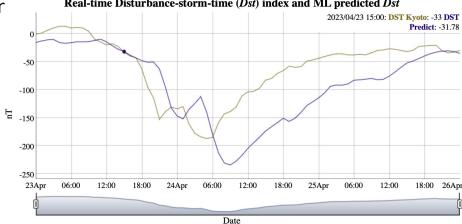
# Space weather indices

F10.7 index (solar radio flux at 10.7cm) → excellent indicator of solar activity





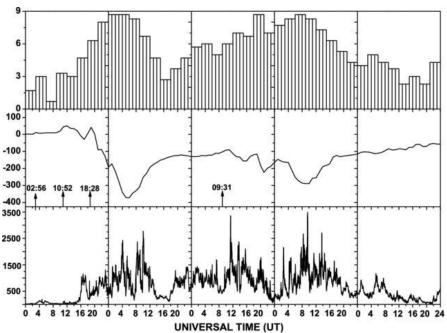

STCE SWIC, 18 - 20 September, 2023


### Space weather indices

- F10.7 index (solar radio flux at 10.7cm)
- Planetary K-index (Kp) → disturbances in the horizontal component of Earth's B-field, 0-9, from 3 hour intervals and 13 mid-latitude stations



### Space weather indices


- F10.7 index (solar radio flux at 10.7cm)
- Planetary K-index (Kp) → disturbances in the horizontal component of Earth's B-field, 0-9, from 3 hour intervals and 13 mid-latitude stations
- **Disturbance storm-time index (Dst)**  $\rightarrow$  field variations in the horizontal component of the Earth's magnetic field measuring the strer near-equatorial stations



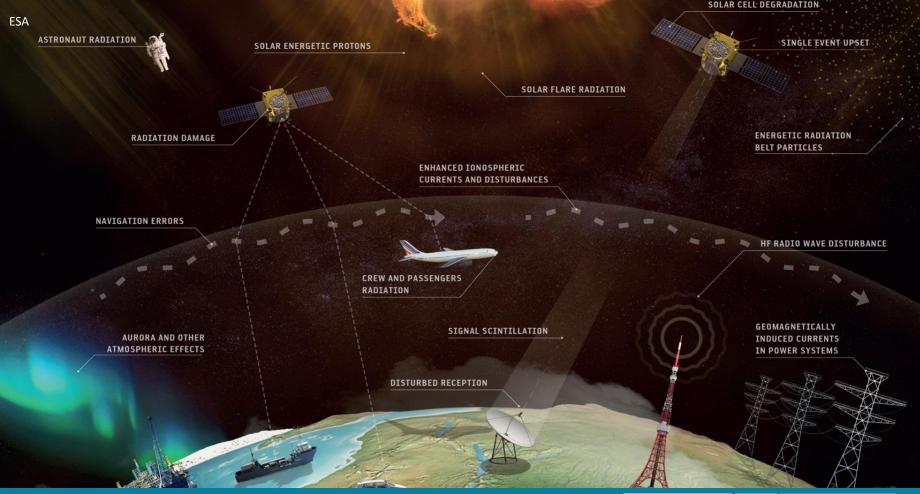
6

### Space weather indices

- F10.7 index (solar radio flux at 10.7cm)
- Planetary K-index (Kp)
- Disturbance storm-time index (Dst)
- Auroral Electrojet index (AE) → total deviation from the quiet day horizontal B field around the auroral oval, giving a measure of auroral zone activity, instantaneous basis, measures in high northern latitude stations



#### Classification of space weather events


- geomagnetic storms (solar wind disturbance)
  - with intensity levels G1 to G5
     (Kp 5 to Kp 9)
- radiation storms (charged particle fluxes)
  - with intensity levels S1 to S5 (flux of >10 MeV particles 10 - 10e5\*)
  - radio blackouts (solar flares)
    - with intensity levels R1 to R5 (M1, M5, X1, X10, X20)

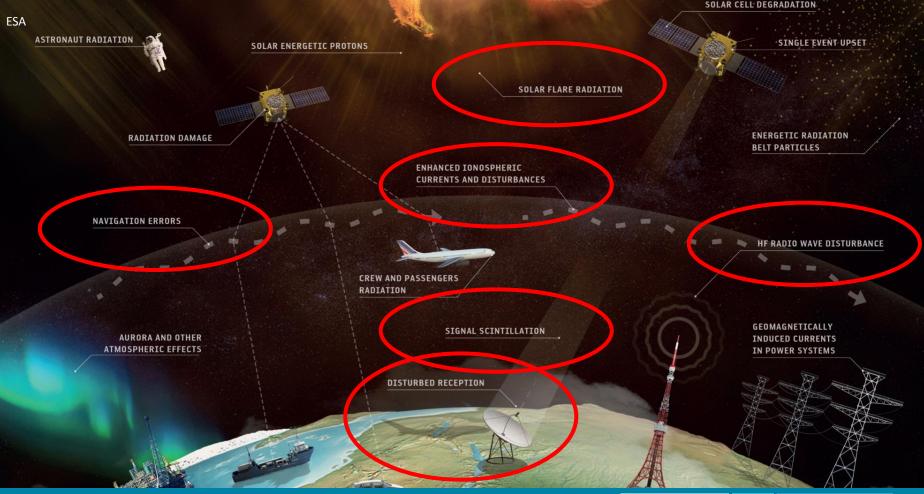
| Class             | Possible effects on assets                                                                                                        | Avg. frequency          |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Minor to moderate |                                                                                                                                   |                         |
| R1 - R2           | degraded LFN, limited HFC blackout for up to tens of minutes                                                                      | every few days          |
| S1 - S2           | minor impacts on HFC in polar areas, elevated radiation hazard to aircrew at high altitudes and latitudes                         | once in a few<br>months |
| G1 - G2           | PG fluctuations, minor satellite orbit corrections needed                                                                         | every few days          |
| Strong to severe  |                                                                                                                                   |                         |
| R3 - R4           | wide area HFC blackout, degraded LFN for up to an hour                                                                            | every few months        |
| S3 - S4           | elevated radiation hazard to aircrew, satellite sensor outages, HCF and LFN outages and errors likely                             | once a year             |
| G3 - G4           | PG voltage issues, satellites undergo surface charging and have<br>orientation problems, LFN degraded for hours, HFC disrupted    | every few months        |
| Extreme           |                                                                                                                                   |                         |
| R5                | complete HFC blackout for hours, LFN outages for hours and significant error                                                      | < once in 10 years      |
| S5                | high radiation hazard to aircrew, satellite systems damaged, HFC blackouts, LFN with significant errors                           | < once in 10 years      |
| G5                | PG damage, HFC impossible for days, LFN outages & errors for hours, extensive satellite surface charging and orientation problems | every 2 to 3 years      |



\* particle/cm2/s/ster

-

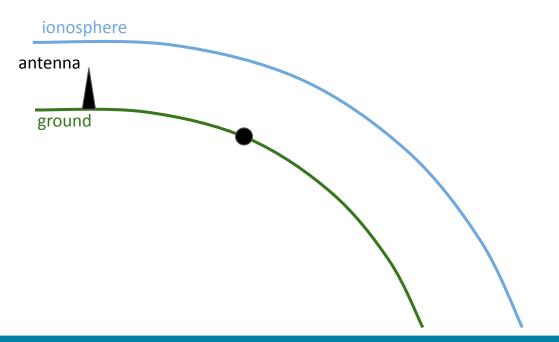




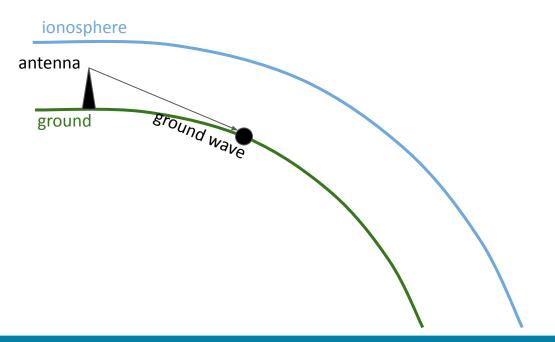

Definitions  $\rightarrow$  Radio comm.  $\rightarrow$  Spacecraft  $\rightarrow$  Power grid  $\rightarrow$  Special considerations  $\rightarrow$  Vulnerability of systems  $\rightarrow$  Are we ready?  $\rightarrow$  Recommendations

# 2. (Radio) communications effects

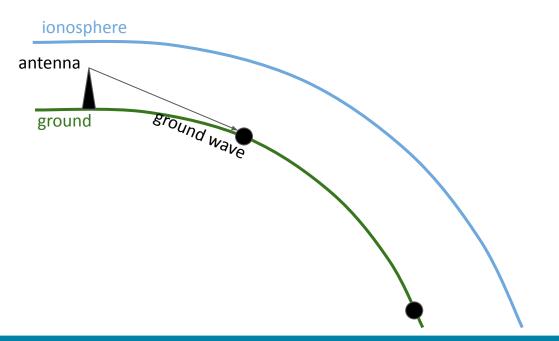



STCE SWIC, 18 - 20 September, 2023

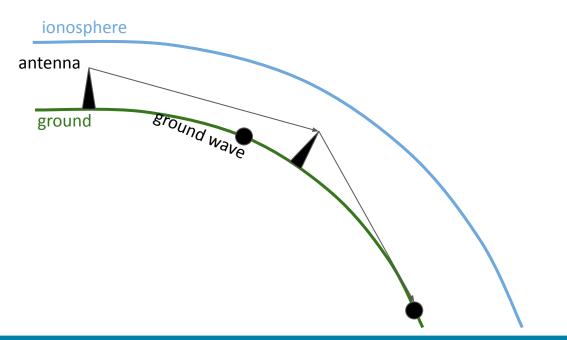



STCE SWIC, 18 - 20 September, 2023

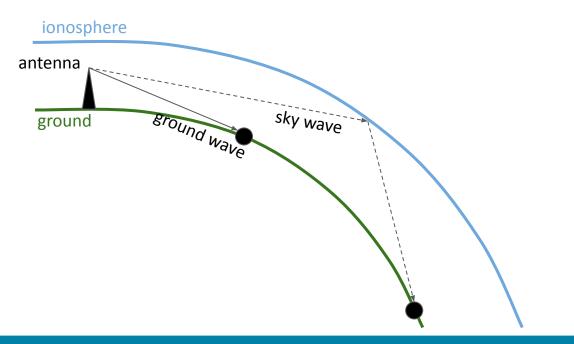



11

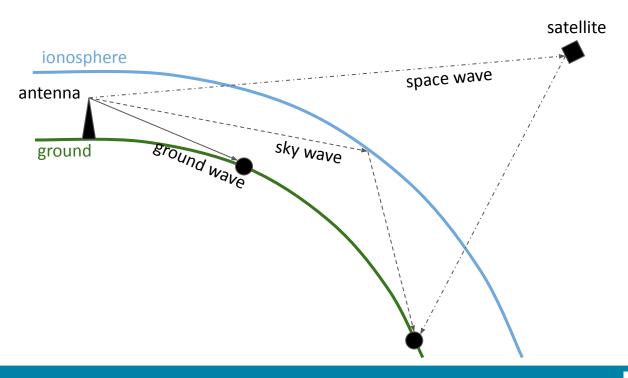




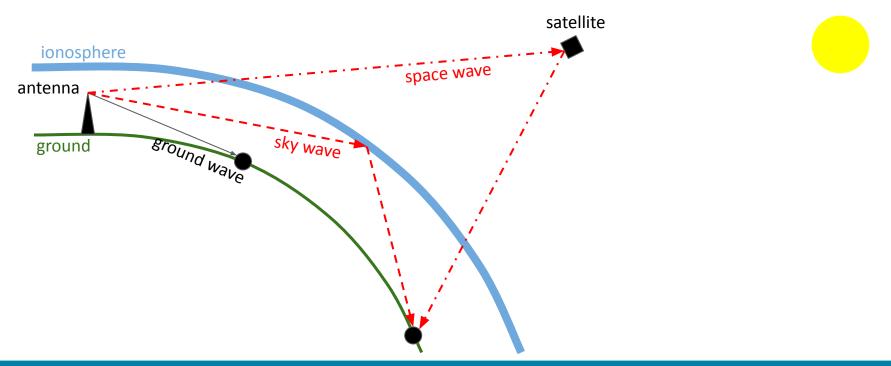




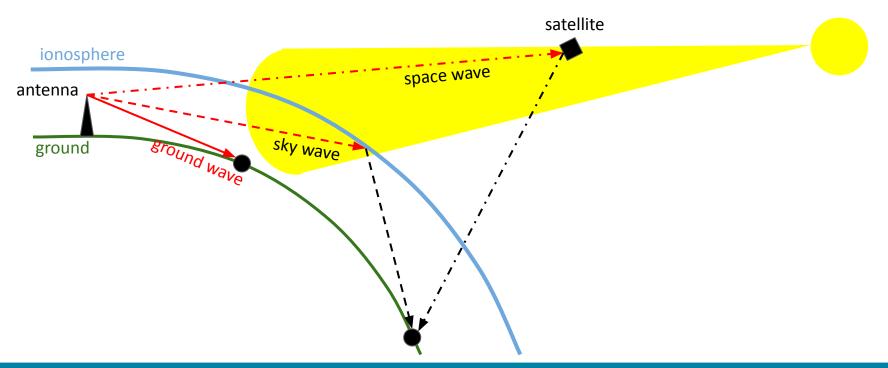





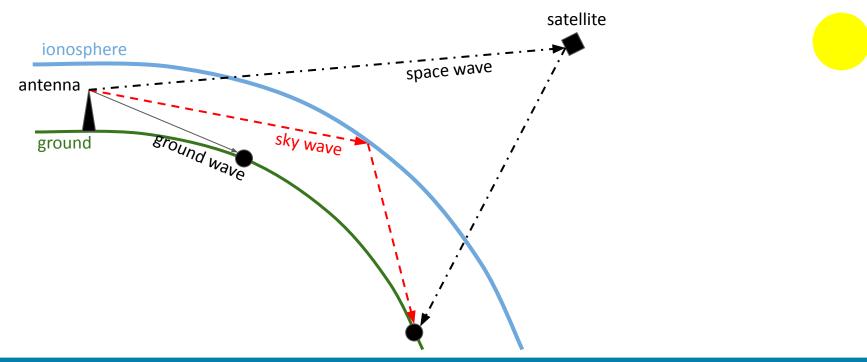








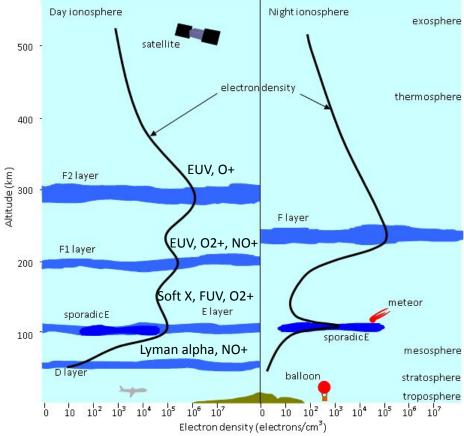













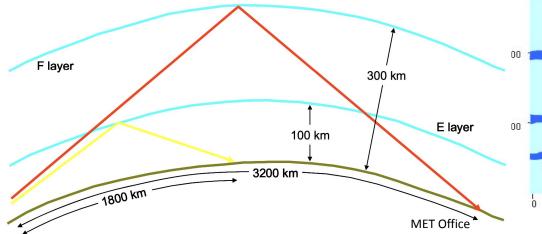

21

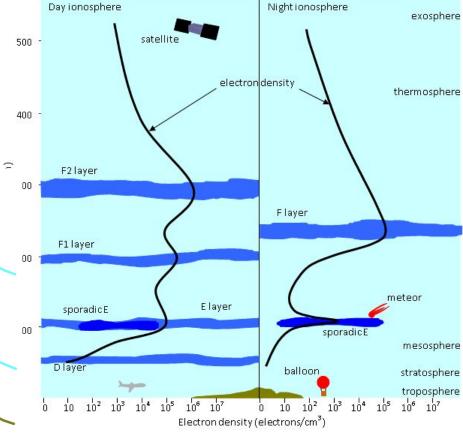
# Ionospheric composition

- HF RW hitting free e- in the ionosphere cause them to vibrate and re-radiate the energy back down at the same frequency → free e- cause refraction and reflection of RW
- where this happens depends on the free
   e- density profile
- the region of highest e- density determines the highest freq. capable of being reflected



YAL HIGHEF


CDO



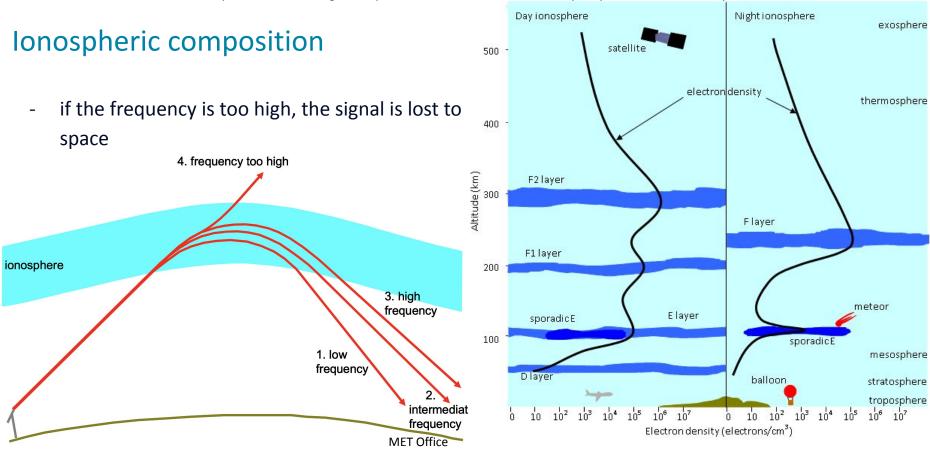


 $Definitions \rightarrow \textbf{Radio comm.} \rightarrow Spacecraft \rightarrow Power grid \rightarrow Special considerations \rightarrow Vulnerability of systems \rightarrow Are we ready? \rightarrow Recommendations$ 

## Ionospheric composition

 use of E and F layers instead of LOS increases our range from 100km to 200km (LOS) to 1500km (E) to 3500km (F)










23

 $Definitions \rightarrow \textbf{Radio comm.} \rightarrow Spacecraft \rightarrow Power grid \rightarrow Special considerations \rightarrow Vulnerability of systems \rightarrow Are we ready? \rightarrow Recommendations \rightarrow Vulnerability of systems \rightarrow Are we ready? \rightarrow Recommendations \rightarrow Vulnerability of systems \rightarrow Are we ready? \rightarrow Recommendations \rightarrow Vulnerability of systems \rightarrow Are we ready? \rightarrow Recommendations \rightarrow Vulnerability of systems \rightarrow Are we ready? \rightarrow Recommendations \rightarrow Vulnerability of systems \rightarrow Are we ready? \rightarrow Recommendations \rightarrow Vulnerability of systems \rightarrow Are we ready? \rightarrow Recommendations \rightarrow Vulnerability of systems \rightarrow Are we ready? \rightarrow Recommendations \rightarrow Vulnerability of systems \rightarrow Are we ready? \rightarrow Recommendations \rightarrow Vulnerability of systems \rightarrow Are we ready? \rightarrow Recommendations \rightarrow Vulnerability of systems \rightarrow Are we ready? \rightarrow Recommendations \rightarrow Vulnerability of systems \rightarrow Are we ready? \rightarrow Recommendations \rightarrow Vulnerability of systems \rightarrow Are we ready? \rightarrow Recommendations \rightarrow Vulnerability of systems \rightarrow Are we ready? \rightarrow Recommendations \rightarrow Vulnerability of systems \rightarrow Are we ready? \rightarrow Recommendations \rightarrow Vulnerability of systems \rightarrow Are we ready? \rightarrow Recommendations \rightarrow Vulnerability of systems \rightarrow Are we ready? \rightarrow Recommendations \rightarrow Vulnerability of systems \rightarrow Are we ready? \rightarrow Recommendations \rightarrow Vulnerability of systems \rightarrow Are we ready? \rightarrow Recommendations \rightarrow Vulnerability of systems \rightarrow Are we ready? \rightarrow Recommendations \rightarrow Vulnerability of systems \rightarrow Are we ready? \rightarrow Recommendations \rightarrow Vulnerability of systems \rightarrow Are we ready? \rightarrow Recommendations \rightarrow Vulnerability of systems \rightarrow Are we ready? \rightarrow Recommendations \rightarrow Are we ready? \rightarrow Are we ready? \rightarrow Recommendations \rightarrow Are we ready? \rightarrow Recommendations \rightarrow$ 



**ROYAL HIGHER** 

STITUTE year think tank CDC

**KU LEUVEN** 

STCE SWIC, 18 - 20 September, 2023

#### Ionospheric communication challenges

- 1. Ionospheric plasma frequency changes  $\rightarrow$  affects usable frequency range
- 2. Ionisation of lower layers  $\rightarrow$  short-wave fade-outs (inability to communicate)
- 3. Travelling ionospheric disturbances  $\rightarrow$  defocusing of signals
- 4. Plasma bubbles  $\rightarrow$  signal scintillation and degradation

exosphere

thermosphere

Night ionosphere

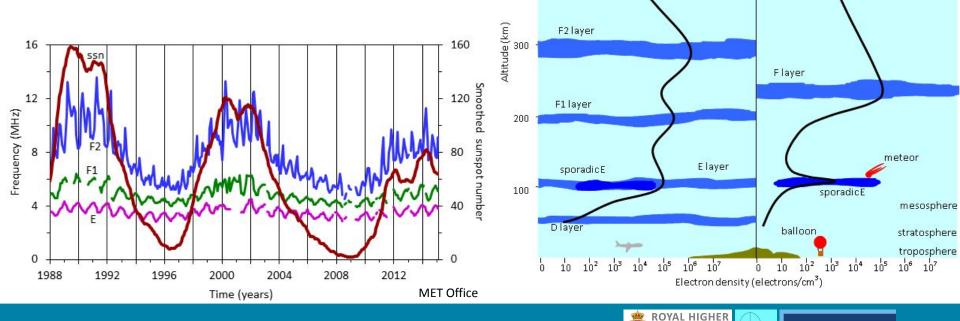
electrondensity

CDC

**KU LEUVEN** 

 $Definitions \rightarrow \textbf{Radio comm.} \rightarrow Spacecraft \rightarrow Power grid \rightarrow Special considerations \rightarrow Vulnerability of systems \rightarrow Are we ready? \rightarrow Recommendations$ 

500


400

Day ionosphere

satellit

#### Problem 1: plasma freq. change

- the usable HF RW freq. is also directly dependent on the solar activity:



25

exosphere

thermosphere

Night ionosphere

electronidensity

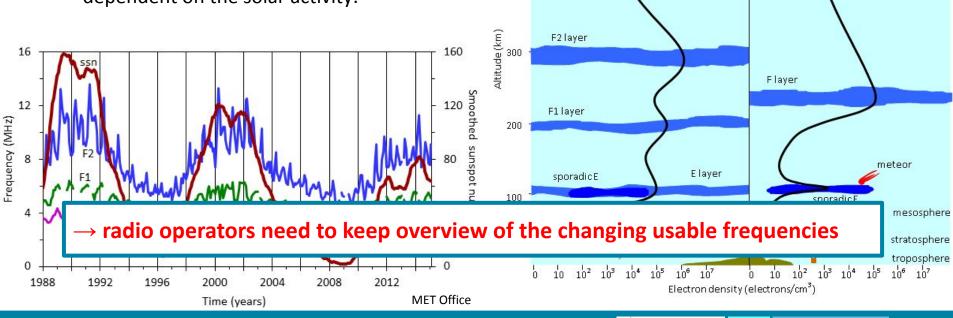
Definitions  $\rightarrow$  Radio comm.  $\rightarrow$  Spacecraft  $\rightarrow$  Power grid  $\rightarrow$  Special considerations  $\rightarrow$  Vulnerability of systems  $\rightarrow$  Are we ready?  $\rightarrow$  Recommendations

500

400

Day ionosphere

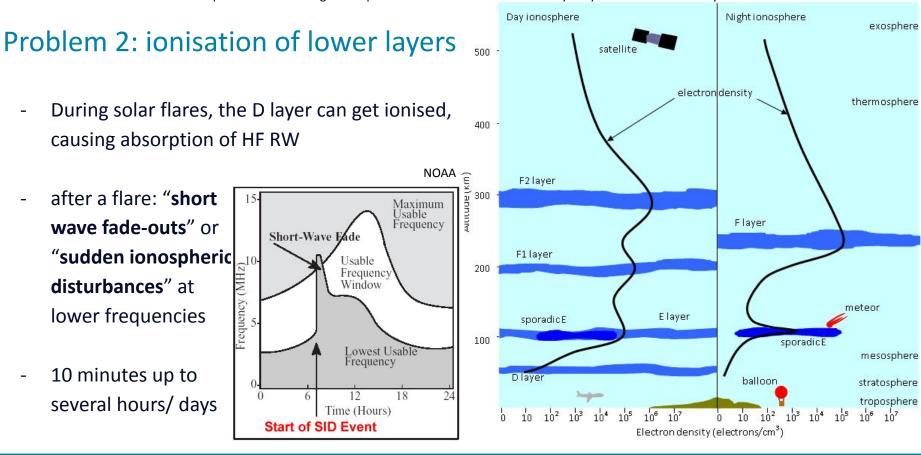
satellit


ROYAL HIGHER

CDC

**KU LEUVEN** 

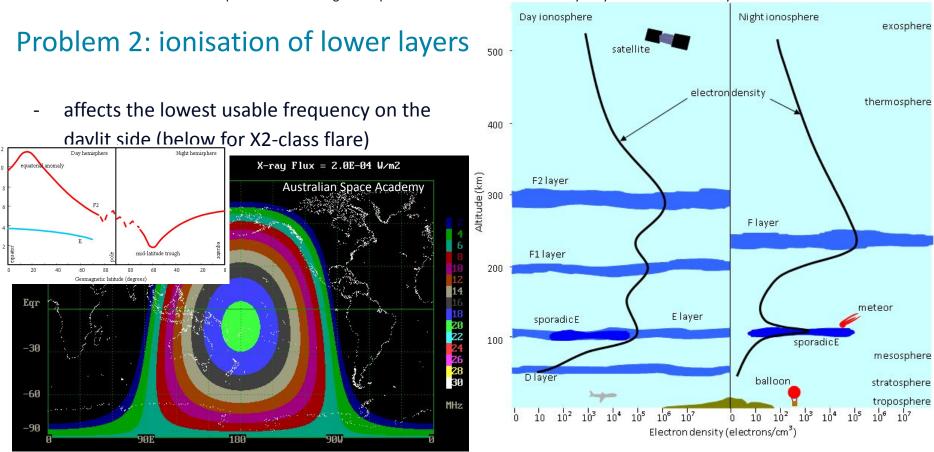
#### Problem 1: plasma freq. change


- the usable HF RW freq. is also directly dependent on the solar activity:



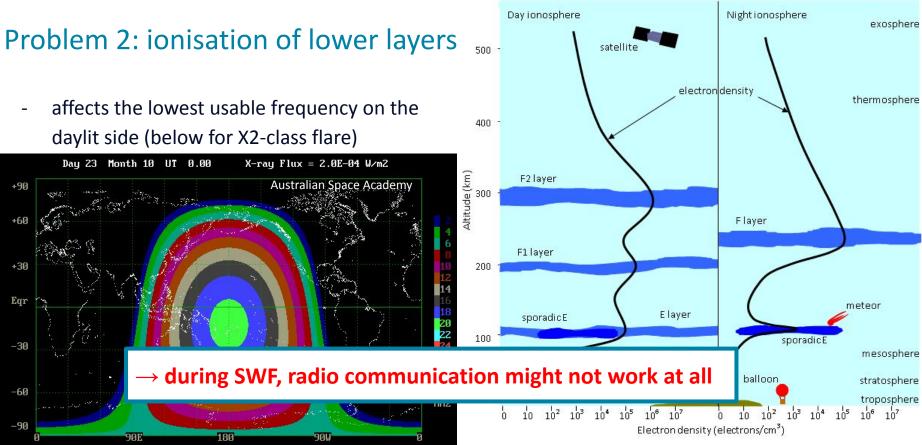


27


 $Definitions \rightarrow \textbf{Radio comm.} \rightarrow Spacecraft \rightarrow Power grid \rightarrow Special considerations \rightarrow Vulnerability of systems \rightarrow Are we ready? \rightarrow Recommendations \rightarrow Vulnerability of systems \rightarrow Are we ready? \rightarrow Recommendations \rightarrow Vulnerability of systems \rightarrow Are we ready? \rightarrow Recommendations \rightarrow Vulnerability of systems \rightarrow Are we ready? \rightarrow Recommendations \rightarrow Vulnerability of systems \rightarrow Are we ready? \rightarrow Recommendations \rightarrow Vulnerability of systems \rightarrow Are we ready? \rightarrow Recommendations \rightarrow Vulnerability of systems \rightarrow Are we ready? \rightarrow Recommendations \rightarrow Vulnerability of systems \rightarrow Are we ready? \rightarrow Recommendations \rightarrow Vulnerability of systems \rightarrow Are we ready? \rightarrow Recommendations \rightarrow Vulnerability of systems \rightarrow Are we ready? \rightarrow Recommendations \rightarrow Vulnerability of systems \rightarrow Are we ready? \rightarrow Recommendations \rightarrow Vulnerability of systems \rightarrow Are we ready? \rightarrow Recommendations \rightarrow Vulnerability of systems \rightarrow Are we ready? \rightarrow Recommendations \rightarrow Vulnerability of systems \rightarrow Are we ready? \rightarrow Recommendations \rightarrow Vulnerability of systems \rightarrow Are we ready? \rightarrow Recommendations \rightarrow Vulnerability of systems \rightarrow Are we ready? \rightarrow Recommendations \rightarrow Vulnerability of systems \rightarrow Are we ready? \rightarrow Recommendations \rightarrow Vulnerability of systems \rightarrow Are we ready? \rightarrow Recommendations \rightarrow Vulnerability of systems \rightarrow Are we ready? \rightarrow Recommendations \rightarrow Vulnerability of systems \rightarrow Are we ready? \rightarrow Recommendations \rightarrow Vulnerability of systems \rightarrow Are we ready? \rightarrow Recommendations \rightarrow Vulnerability of systems \rightarrow Are we ready? \rightarrow Recommendations \rightarrow Vulnerability of systems \rightarrow Are we ready? \rightarrow Recommendations \rightarrow Are we ready? \rightarrow Are we ready? \rightarrow Recommendations \rightarrow Are we ready? \rightarrow Recommendations \rightarrow Are we ready? \rightarrow Recommendations \rightarrow Are we ready? \rightarrow Are we re$ 



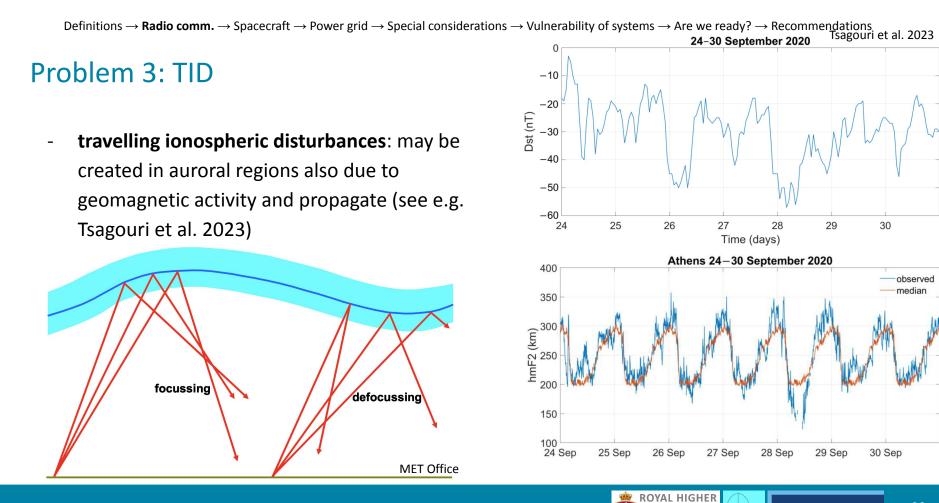
ROYAL HIGHER


CDC

 $Definitions \rightarrow \textbf{Radio comm.} \rightarrow Spacecraft \rightarrow Power grid \rightarrow Special considerations \rightarrow Vulnerability of systems \rightarrow Are we ready? \rightarrow Recommendations \rightarrow Vulnerability of systems \rightarrow Are we ready? \rightarrow Recommendations \rightarrow Vulnerability of systems \rightarrow Are we ready? \rightarrow Recommendations \rightarrow Vulnerability of systems \rightarrow Are we ready? \rightarrow Recommendations \rightarrow Vulnerability of systems \rightarrow Are we ready? \rightarrow Recommendations \rightarrow Vulnerability of systems \rightarrow Are we ready? \rightarrow Recommendations \rightarrow Vulnerability of systems \rightarrow Are we ready? \rightarrow Recommendations \rightarrow Vulnerability of systems \rightarrow Are we ready? \rightarrow Recommendations \rightarrow Vulnerability of systems \rightarrow Are we ready? \rightarrow Recommendations \rightarrow Vulnerability of systems \rightarrow Are we ready? \rightarrow Recommendations \rightarrow Vulnerability of systems \rightarrow Are we ready? \rightarrow Recommendations \rightarrow Vulnerability of systems \rightarrow Are we ready? \rightarrow Recommendations \rightarrow Vulnerability of systems \rightarrow Are we ready? \rightarrow Recommendations \rightarrow Vulnerability of systems \rightarrow Are we ready? \rightarrow Recommendations \rightarrow Vulnerability of systems \rightarrow Are we ready? \rightarrow Recommendations \rightarrow Vulnerability of systems \rightarrow Are we ready? \rightarrow Recommendations \rightarrow Vulnerability of systems \rightarrow Are we ready? \rightarrow Recommendations \rightarrow Vulnerability of systems \rightarrow Are we ready? \rightarrow Recommendations \rightarrow Vulnerability of systems \rightarrow Are we ready? \rightarrow Recommendations \rightarrow Vulnerability of systems \rightarrow Are we ready? \rightarrow Recommendations \rightarrow Vulnerability of systems \rightarrow Are we ready? \rightarrow Recommendations \rightarrow Vulnerability of systems \rightarrow Are we ready? \rightarrow Recommendations \rightarrow Are we r$ 

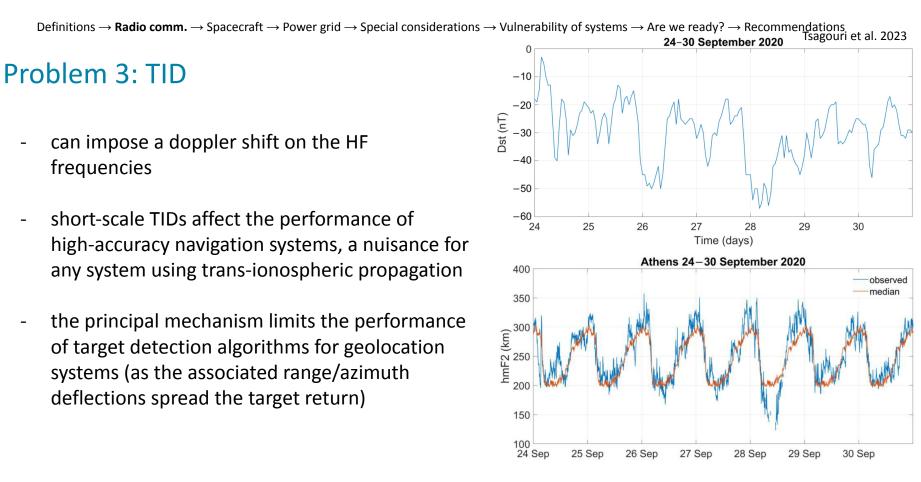





Definitions  $\rightarrow$  Radio comm.  $\rightarrow$  Spacecraft  $\rightarrow$  Power grid  $\rightarrow$  Special considerations  $\rightarrow$  Vulnerability of systems  $\rightarrow$  Are we ready?  $\rightarrow$  Recommendations



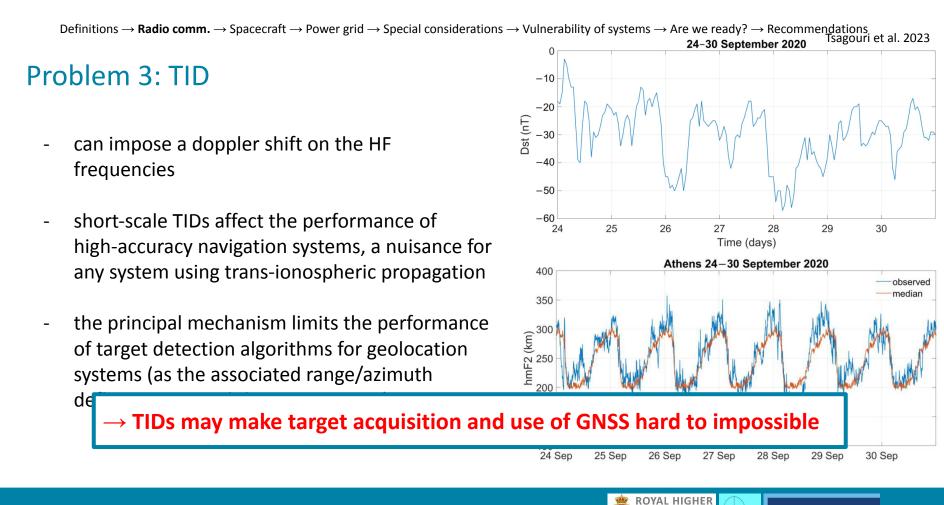



YAL HIGHER

CDO






CDC

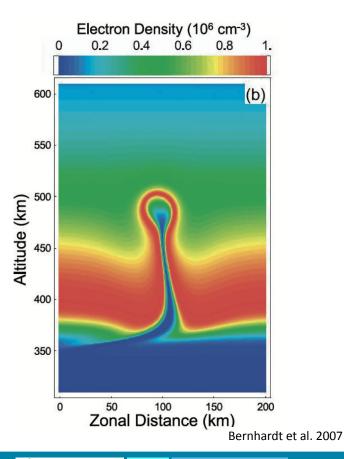




'AL HIGHE

CDO



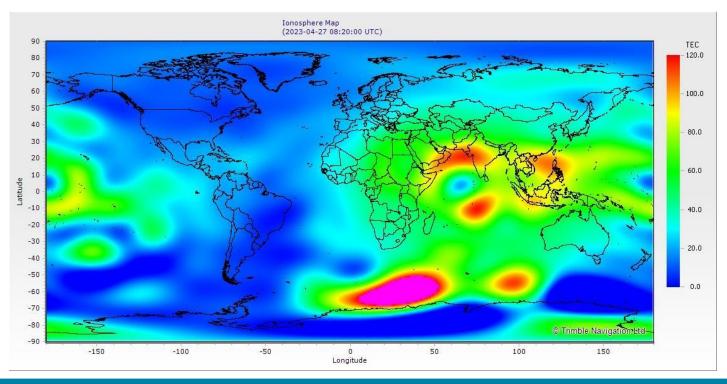



**KU LEUVEN** 

CDO

#### Problem 4: plasma bubble, irregularities

- plasma bubble: generally after sunset, but might also happen later at night, spread-F
- 50-200km (EW) x > 3000km (NS) due to:
  - lack of ionising radiation (loss of free e-)
  - R-T instabilities creating further irregularities



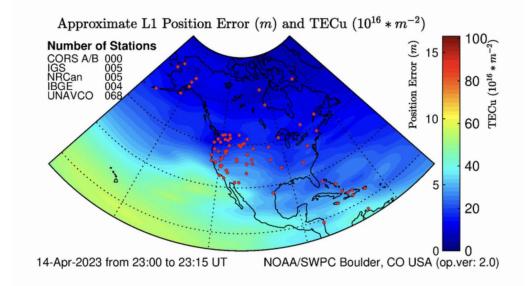

CDC

**KU LEUVEN** 

HIGHER

### Total electron count (TEC) (current info here)

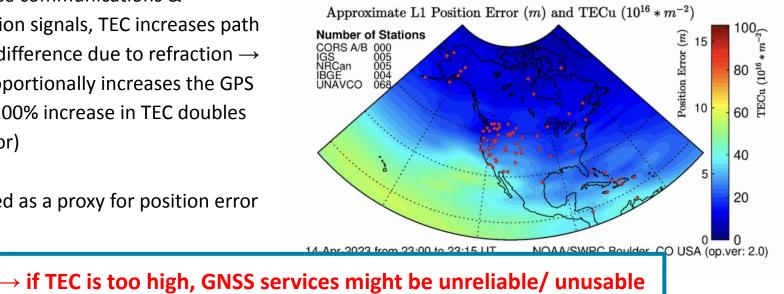





34

#### STCE SWIC, 18 - 20 September, 2023

#### Problem 4: plasma bubble, irregularities

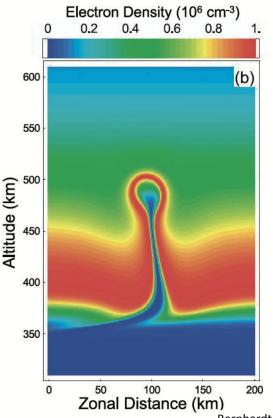

- for space communications & navigation signals, TEC increases path length difference due to refraction → TEC proportionally increases the GPS error (100% increase in TEC doubles the error)
- TEC used as a proxy for position error
- actual information <u>here</u>





#### Problem 4: plasma bubble, irregularities

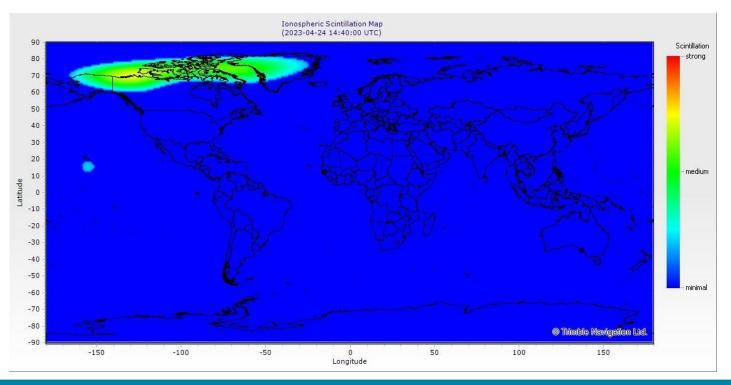
- for space communications & navigation signals, TEC increases path length difference due to refraction  $\rightarrow$ TEC proportionally increases the GPS error (100% increase in TEC doubles the error)
- TEC used as a proxy for position error




actual



### Problem 4: plasma bubble, irregularities


- plasma bubble: generally after sunset, but might also happen later at night, spread-F
- 50-200km (EW) x > 3000km (NS) due to:
  - lack of ionising radiation (loss of free e-)
  - R-T instabilities creating further irregularities
- ionosphere reshaped after sunset full of irregularities
- this can cause signal scintillation



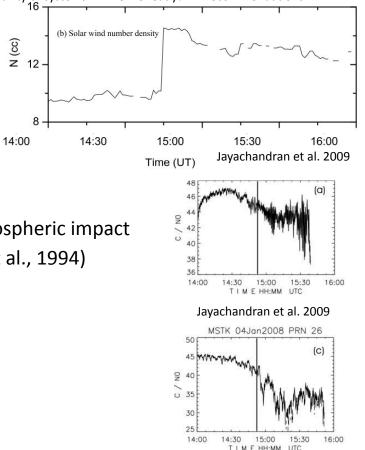
CDC

**KU LEUVEN** 

### Ionospheric scintillation (current info here)






38

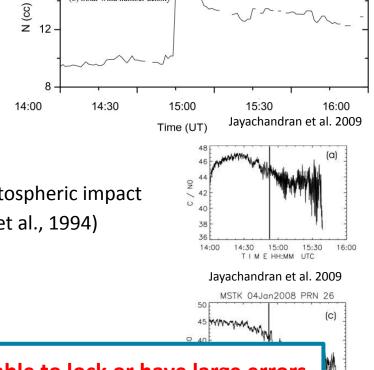
STCE SWIC, 18 - 20 September, 2023

Definitions  $\rightarrow$  Radio comm.  $\rightarrow$  Spacecraft  $\rightarrow$  Power grid  $\rightarrow$  Special considerations  $\rightarrow$  Vulnerability of systems  $\rightarrow$  Are we ready?  $\rightarrow$  Recommendations

### Problem 4: plasma bubble, irregularities

- scintillations due to spatial/ temporal irregularities result in positioning errors, difficult to forecast
- errors also due to e.g. plasma bubbles but also "magnetospheric impact events" that can be caused by dense solar wind (Konik et al., 1994)
- if signal to noise ratio <  $10 \rightarrow$ loss of lock
- monitored by the ionospheric scintillation monitor




CDC

**KU LEUVEN** 

Definitions  $\rightarrow$  Radio comm.  $\rightarrow$  Spacecraft  $\rightarrow$  Power grid  $\rightarrow$  Special considerations  $\rightarrow$  Vulnerability of systems  $\rightarrow$  Are we ready?  $\rightarrow$  Recommendations

### Problem 4: plasma bubble, irregularities

- scintillations due to spatial/ temporal irregularities result in positioning errors, difficult to forecast
- errors also due to e.g. plasma bubbles but also "magnetospheric impact events" that can be caused by dense solar wind (Konik et al., 1994)
- if signal to noise ratio <  $10 \rightarrow$  loss of lock



14:00

CDO

14:30

15:00

TIME HH:MM

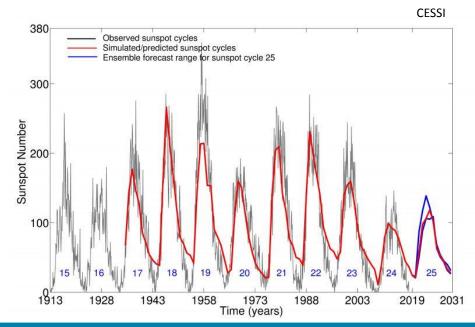
**KU LEUVEN** 

15:30

UTC

(b) Solar wind number density

monitored by the ionospheric scintillation monitor


 $\rightarrow$  if scintillation is too strong, GNSS might be unable to lock or have large errors



16:00

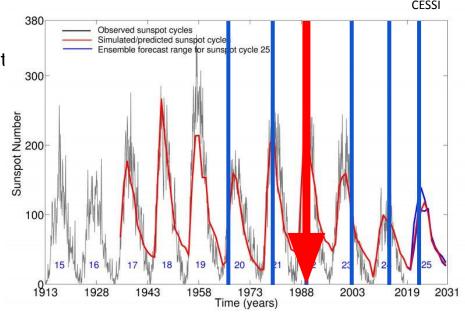
## Examples

- all these effects (TEC, scintillation, SWF, TIDs etc.) largely associated with solar activity





## Examples


- all these effects (TEC, scintillation, SWF, TIDs etc.) largely associated with solar activity
- 380 the solar cycle is roughly 11 years long with Observed sunspot cycles -Simulated/predicted sunspot cycle semble forecast range for sunsi ot cycle 25 periods of minima and maxima 300 Sunspot Number in this presentation mostly: notable events in 1967, 1979, 1989, 2003 (Halloween storms), 2015, 2022 100 1913 1928 1943 1958 1973 Time (years) 1988 2003 2019 2031

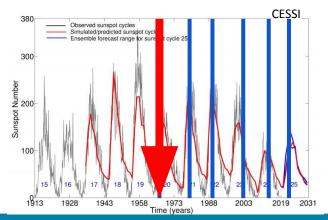


CESSI

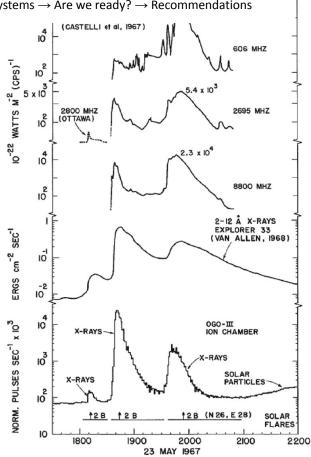
### 1989 HF radio disruption during UNTAG

- In March 1989, the Australian Army joined the UN Peacekeeping Force in Namibia (Australian contribution to UNTAG)
  - experienced significant HF RC problems shortly after its deployment
  - HF RC very difficult during the first two months




HIGHER



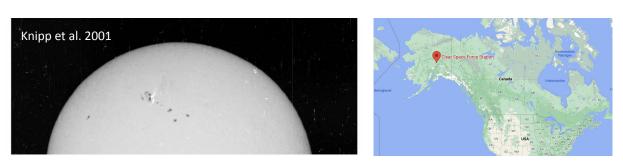

Definitions  $\rightarrow$  Radio comm.  $\rightarrow$  Spacecraft  $\rightarrow$  Power grid  $\rightarrow$  Special considerations  $\rightarrow$  Vulnerability of systems  $\rightarrow$  Are we ready?  $\rightarrow$  Recommendations

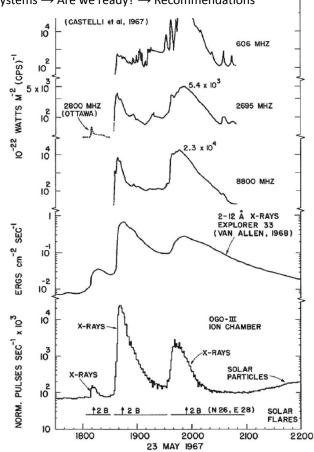
## **1967 Disruption of BMEWS**

- in May 1967, an X6.5 solar flare followed by a CME triggered by the McMath active region
  - flare resulting in disruption of early warning radars
- the US thought it was Russia and were "ready to launch"
- Kp = 9, Dst = -287nT (May 23)









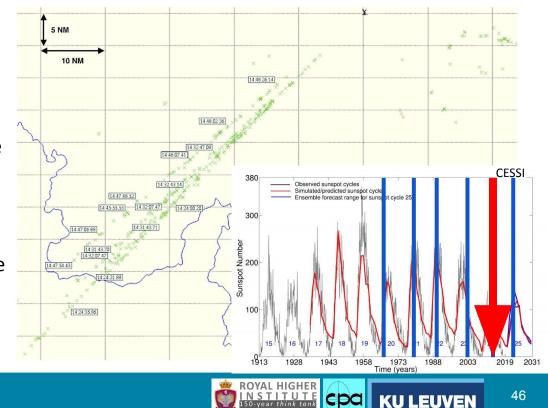

## **1967 Disruption of BMEWS**

- in May 1967, an X6.5 solar flare followed by a CME triggered by the McMath active region
  - flare resulting in disruption of early warning radars
- the US thought it was Russia and were "ready to launch"
- Kp = 9, Dst = -287nT (May 23)





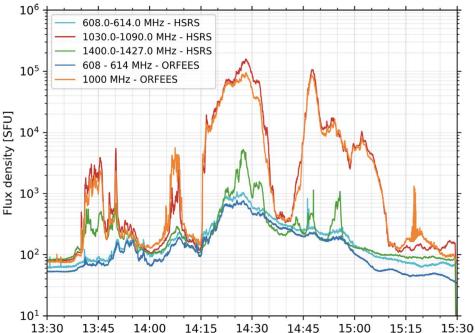
CDO




**KU LEUVEN** 

### 2015 Black out of Swedish air-traffic control systems

Marqué et al. 2018


- November 4, 2015, an M3.7 solar flare responsible for disruption of secondary air traffic radars (1030 to 1090 MHz), showing "ghost echoes" in straight lines in the direction of the Sun
- no significant disruption of primary ATC radars (2700 to 2900 MHz) → the frequency is important!



### 2015 Black out of Swedish air-traffic control systems

Marqué et al. 2018

- November 4, 2015, an M3.7 solar
   flare responsible for disruption of
   secondary air traffic radars (1030 to
   1090 MHz), showing "ghost echoes"
   in straight lines in the direction of the
   Sun
- no significant disruption of primary ATC radars (2700 to 2900 MHz) → the frequency is important!





106

10<sup>5</sup>

104

10<sup>3</sup>

10<sup>2</sup>

Flux density [SFU]

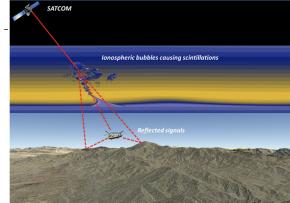
608.0-614.0 MHz - HSRS 1030.0-1090.0 MHz - HSRS 1400.0-1427.0 MHz - HSRS

608 - 614 MHz - ORFEES

1000 MHz - ORFEES

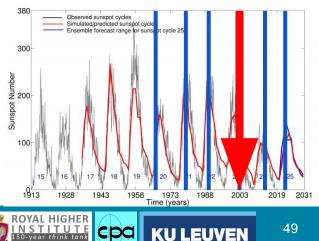
### 2015 Black out of Swedish air-traffic control systems

Marqué et al. 2018

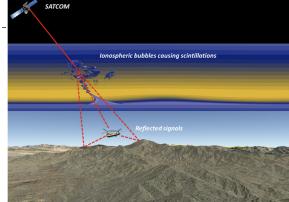

- November 4, 2015, an M3.7 solar flare responsible for disruption of secondary air traffic radars (1030 to 1090 MHz), showing "ghost echoes" in straight lines in the direction of the Sun
- no significant disruption of primary ATC radars (2700 to 2900 MHz) → the
   frequency is important.

 $\rightarrow$  a SW event might affect only some systems, depending on the frequencies

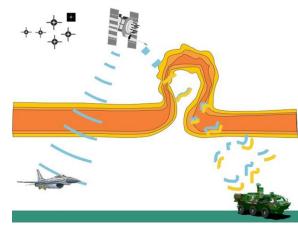
<del>-1</del> 5:30




- plasma bubbles post-midnight might occur due to increased geomagnetic activity of Kp > 3 (Huang et al. 2005): the battle of Takur Ghar: Kp = 4, 0300 LT March 4, 2002 (solar maximum)
- during the battle, Chinook helicopters from the QRF were called to help Navy SEAL units, landing at Takur Ghar (Afghanistan)
- in the meantime, the area became "hot", but the helicopters never received the repeated warnings avoid the area → the Chinook crashed and seven people died




Sketch prepared by ROB/GNSS (Dr Nicolas Bergeot) with NICT/AERI – Dr Yokoyama's model as base <a href="http://aer.nict.go.jp/en/people/spe">http://aer.nict.go.jp/en/people/spe</a> vokoyama.html


CESSI



- plasma bubbles post-midnight might occur due to increased geomagnetic activity of Kp > 3 (Huang et al. 2005): the battle of Takur Ghar: Kp = 4, 0300 LT March 4, 2002 (solar maximum)
- during the battle, Chinook helicopters from the QRF were called to help Navy SEAL units, landing at Takur Ghar (Afghanistan)
- in the meantime, the area became "hot", but the helicopters never received the repeated warnings avoid the area → the Chinook crashed and seven people died

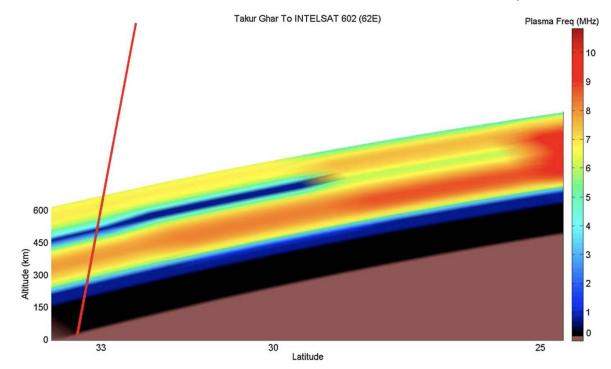


Sketch prepared by ROB/GNSS (Dr Nicolas Bergeot) with NICT/AERI – Dr Yokoyama's model as base <a href="http://aer.nict.go.jp/en/people/spe">http://aer.nict.go.jp/en/people/spe</a> <a href="http://aer.nict.go.jp/en/people/spe">http://aer.nict.go.jp/en/spe</a> <a href="http://aer.nict.go.jp/en/people/spe">http://aer.nict.go.jp/en/spe</a> <a href="http://aer.nict.go.jp/en/people/spe">http://aer.nict.go.jp/en/spe</a> <a href="http://aer.nict.go.jp/en/people/spe">http://aer.nict.go.jp/en/spe</a> <a href="http://aer.nict.go.jp/en/people/spe">http://aer.nict.go.jp/en/spe</a> <a href="http://aer.nict.go.jp/en/people/spe">http://aer.nict.go.jp/en/spe</a> <a href="http://aer.nict.go.jp/en/spe">http://aer.nict.go.jp/en/spe</a> <a href="http://aer.nict.go.jp



CDC

**KU LEUVEN** 


Kelly et al. 2014

51

**KU LEUVEN** 

CDQ

- GUVI UV data electron density reconstruction show clear electron depletion regions consistent with plasma bubbles (Kelly et al. 2014)
  - $\rightarrow$  it is likely that plasma bubbles was what caused the loss of lives and the failure of the operation



Kelly et al. 2014

Takur Ghar To INTELSAT 602 (62E) Plasma Freq (MHz) GUVI UV data - electron 10 density reconstruction show clear electron depletion regions consistent with plasma bubbles (Kelly et al. 2014) 5 600  $\rightarrow$  it is likely that plasma 450 Altitude (km) bubbles was what caused 3 the loss of lives and the

 $\rightarrow$  even a weaker SW event might result in a loss of lives, time & place matter



### Communication SWx overview (VLF to HF)

#### Long-distance comm. (submarines): VLF to LF

- during/after events, signal strength can be degraded for a day or two
- sudden changes in ionospheric density can produce brief phase anomalies

#### Long-distance comm. (A/C, ships or remote land-based units): MF to HF

- X-rays emitted by solar flares can produce shortwave fadeouts & blocking up to a few hours.
- ionospheric storms also affect HF communication by decreasing the maximum useable frequency, or degrading their quality, for up to a few days.
- long-term changes in the solar UV throughout the solar cycle and during seasonal variations → predictable changes in the range of frequencies available for HF comm., however, the variations occurring during individual geomagnetic storms are difficult to forecast.

### Communication SWx overview (VHF to UHF)

#### LOS comm. (between mobile units, including ship-to-shore and air-to-ground): VHF to UHF

- solar radio bursts associated with solar flares can briefly interfere with VHF and UHF signals in the sunlit hemisphere of the Earth, when the sun is low on the horizon
- mobile phone comm. can be impacted by these bursts in the same way (operates within UHF)

#### Land-based fixed LOS communication links using microwave L-band

- solar radio bursts can briefly interfere with L-band communication links

#### Mobile phone networks

- 4G and 5G networks use GPS synchronisation to avoid interference between cell coverage  $\rightarrow$  signal interference if GPS signal disrupted (more GPS used by 5G  $\rightarrow$  more susceptible)

 $Definitions \rightarrow Radio \ comm. \rightarrow \textbf{Spacecraft} \rightarrow Power \ grid \rightarrow Special \ considerations \rightarrow Vulnerability \ of \ systems \rightarrow Are \ we \ ready? \rightarrow Recommendations$ 

# 3. Spacecraft effects



STCE SWIC, 18 - 20 September, 2023

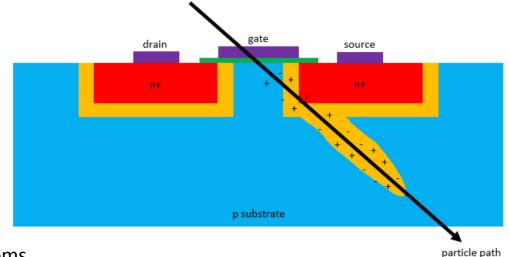


56

**KU LEUVEN** 

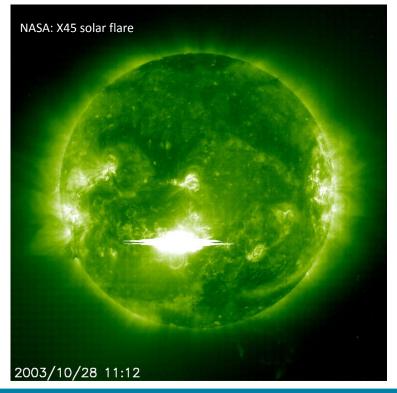
## Spacecraft effects

- S/C exposed to SW first-handedly
- several effects:
  - single event effects




## Single event effects

engineeringpilot.com


- S/C exposed to SW first-handedly
- several effects:
  - single event effects (SEE)
  - usually due to n0 (difficult to shield) or p+
  - the high energy n0/p+ impacts
     the semiconductor material atoms
    - creates electron-hole pairs which can lead to local charge depletion
    - depending how/ where this happens exactly, several types of SEE





## Single event effects

- Halloween 2003 storms, October 29 2003, G5
- Goddard's SS Mission Operations Team: 59% of NASA's Earth and space science satellites were affected
  - data outages
  - reboots
  - unwanted thruster firings
- According to USAF operators: over half a satellites lost, up to 3 days to reestablish contact





## Single event effects

- Halloween 2003 storms, October 29 2003, G5
- Goddard's SS Mission Operations Team: 59% of NASA's Earth and space science satellites were affected
  - data outages
  - reboots
  - unwanted thruster firings
  - According to USAE operators: over half a satellites

lost,

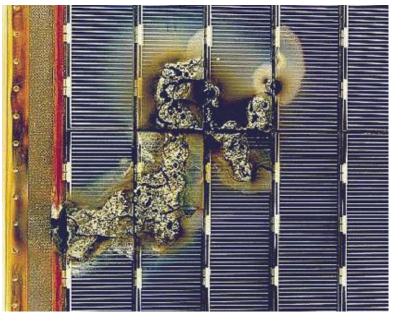
 $\rightarrow$  SEEs can make SATCOM services/ GNSS unavailable for up days

#### 2003/10/28 11:12

NASA: X45 solar flare



**KU LEUVEN** 


## Spacecraft effects

- S/C exposed to SW first-handedly
- several effects:
  - single event effects
  - satellite charging

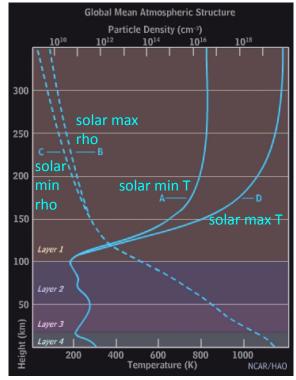


## Spacecraft charging

- surface charging due to hot e- forming above auroras (LEO) or due to solar flux (GEO)
- e.g. Galaxy 15 telecomm. sat lost for 8 months in April 2010, the ADEOS-II (570M USD) in a high inclination LEO lost its power system completely in October 2003
- damage to materials, electronics, PVAs,
   interference with measurements sometimes
   complete loss of power & control



ESA: EURECA sat PVA discharge damage



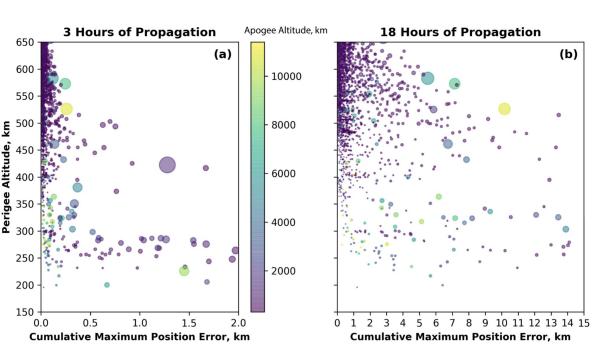

## Spacecraft effects

- S/C exposed to SW first-handedly
- several effects:
  - single event effects
  - satellite charging
  - drag increase



- the atmosphere warms up and expands:
  - absorption of EUV (10 -200nm)
  - Joule heating (increased electrical currents)
  - particle precipitation
- most drag models use 10.7cm radio flux as a proxy for UV flux and Kp/ Ap for short term atmospheric heating:
  - if 10.7 flux > 250 standard solar flux and Kp > 6
- 13-14 March 1989, a LEO sat recorded to lose 30km of altitude

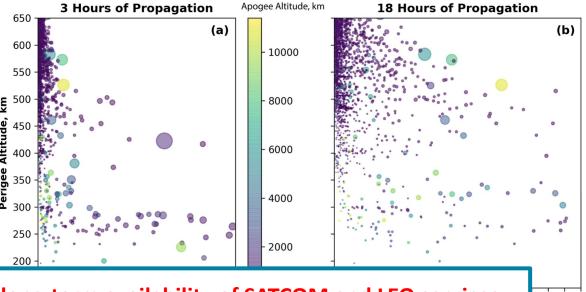





Knipp 2013 density increase 1.00E-11 CME 1 CME 2 CME 3 both on dayside and nightside Density (kg/m^3) 8.00E-12 Dayside Density, 5x to even 10x 6.00E-12 the undisturbed profile 4.00E-12 2.00E-12 drag scales proportionally 0.00E+00 to density 205 206 207 208 209 210 204 Jensity Time (Days)



Berger et al. 2020


- Berger et al. 2020: a
   simulation of cumulative
   position errors of 2653 LEO
   objects in the USAF
   catalogue as a result of a G2
   (Kp 6) storm due to
   increased atmospheric drag
- geomagnetic storms move all LEO objects to new locations → collision risk



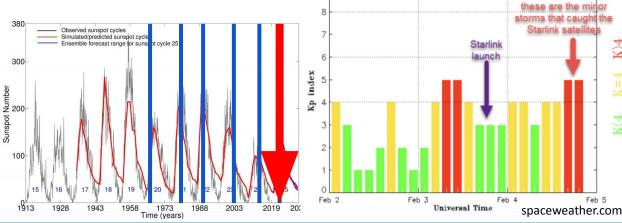


Berger et al. 2020

- Berger et al. 2020: a
  simulation of cumulative
  position errors of 2653 LEO
  objects in the USAF
  catalogue as a result of a G2
  (Kp 6) storm due to
  increased atmospheric drag
- geomagnetic storms move



 $\rightarrow$  drag increase will affect long-term availability of SATCOM and LEO services


2 13 14 15 or. km



### 2022 Starlink sats burn up in the atmosphere

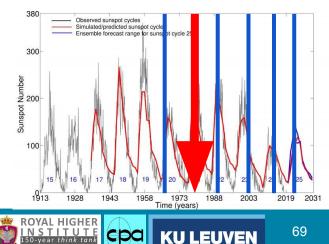
- 2 days before launch a minor G1, then Earth passed in the CME's wake  $\rightarrow$  created another G1 -
- "The Starlink team commanded the satellites into a safe-mode where they would fly edge-on to minimize drag...[] ... Preliminary analysis show the **increased drag at the low altitudes** prevented the satellites from leaving safe-mode to begin orbit raising maneuvers, and up 9 rEstimated Planetary K index (3 hour data) to 40 of the satellites will Observed sunspot cycles re-enter or already have re-Simulated/predicted sunspot cycle Ensemble forecast range for suns ot cycle 25 Starlin aunch entered the Farth's atmos-5 phere."

**SpaceX loses 40 satellites** to geomagnetic storm a day after launch

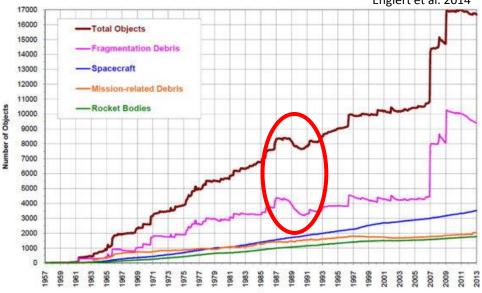


<sup>(C)</sup> 9 February 2022




 $\mathbf{X}$ 

K 4


## 1979 Skylab's premature re-entry

- Skylab was the first US space station (launched 1973)
- originally planned for de-orbit in 1982
- premature re-entry in 1979 because of higher-than-expected solar activity
- millions of dollars invested to save the station, but the attempts still failed





 monthly number of objects in the Earth orbit cataloged by the US Space Surveillance Network





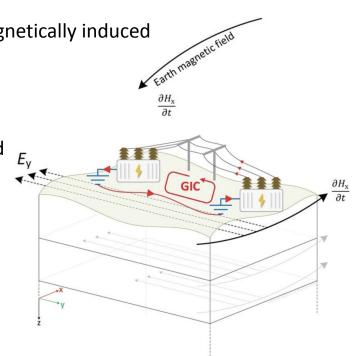
 $Definitions \rightarrow Radio \ comm. \rightarrow Spacecraft \rightarrow \textbf{Power grid} \rightarrow Special \ considerations \rightarrow Vulnerability \ of \ systems \rightarrow Are \ we \ ready? \rightarrow Recommendations$ 

# 4. Power grid effects



STCE SWIC, 18 - 20 September, 2023



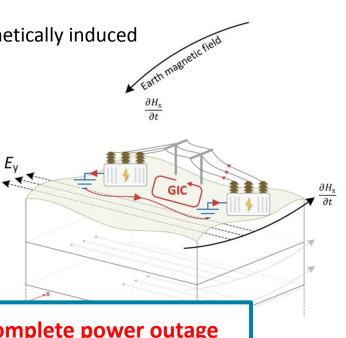

STCE SWIC, 18 - 20 September, 2023

72

FFFN D

#### Power grids

- long-distance high-voltage systems sensitive to geomagnetically induced currents (GIC)
- a time varying magnetic field → telluric currents
   (in the conducting ground) → secondary magnetic field
   → Faraday's law of induction → electric field on
   the surface: GIC
- electric power transmission networks, oil and gas pipelines, telecommunication cables, railway circuits, other large-scale conductors

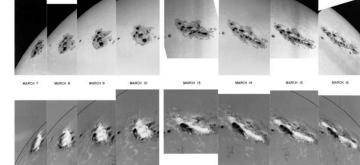





Albert et al. 2022

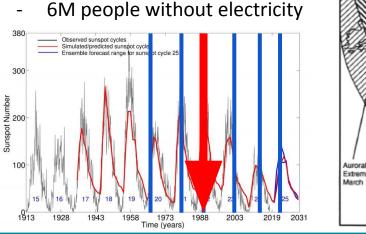
#### Power grids

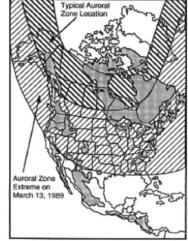
- long-distance high-voltage systems sensitive to geomagnetically induced currents (GIC)
- a time varying magnetic field → telluric currents
   (in the conducting ground) → secondary magnetic field
   → Faraday's law of induction → electric field on
   the surface: GIC
- electric power transmission networks, oil and gas pipelines, telecommunication cables, railway circuits othe  $\rightarrow$  blackouts due to GICs might result in a complete power outage




Albert et al. 2022




### 1989 Quebec blackout


- March 13, 1989, 2:45 LT, -589 nT
- within ~ 1.5 minutes the entire network collapsed, after 9 hours: 17 % of the load still out of service



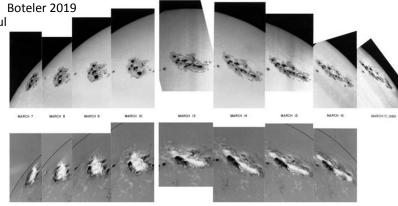
Boteler 2019

Electric Power Research Institute, Inc.

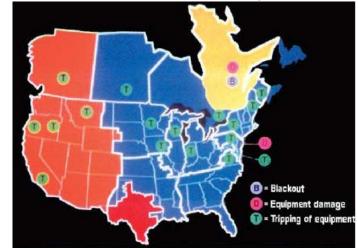









STCE SWIC, 18 - 20 September, 2023


### 1989 Quebec blackout

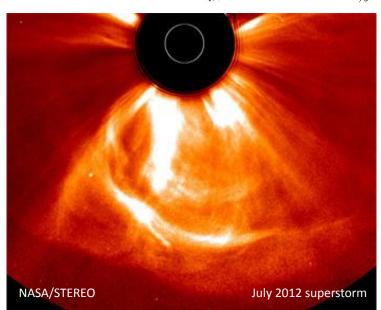
- March 13, 1989, 2:45 LT, -589 nT
- within ~ 1.5 minutes the entire network collapsed, after 9 hours: 17 % of the load still out of service
- 6M people without electricity for several hours
- costs to Hydro-Québec:
  - direct damage to equipment 6.5M CAD
  - total costs 13.2M CAD





Electric Power Research Institute, Inc.

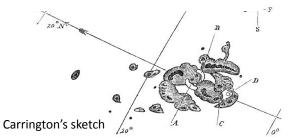


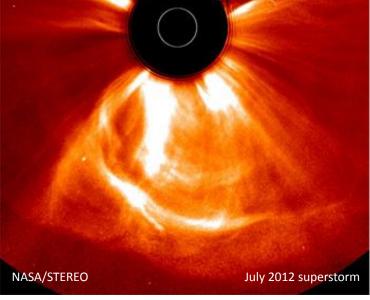

spaceweatherarchive.com



STCE SWIC, 18 - 20 September, 2023

#### Other blackouts


- Malmo, October 30, 2003 (G5), about 50k customers without electricity for 20-50 min
- 1859 Carrington event September 1, 0.80 to 1.75 μT
  - failed telegraph communications, "shocking operators and setting papers ablaze"
  - In Boston, could communicate only when they unplugged batteries: atmosphere so charged due to the auroral current was sufficient to transmit messages to Portland

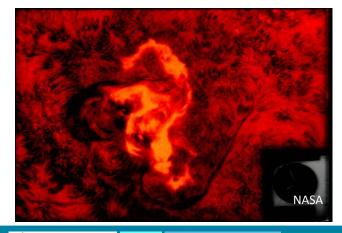



Carrington's sketch

#### Other blackouts

- Malmo, October 30, 2003 (G5), about 50k customers without electricity for 20-50 min
- July 23, 2012 "superstorm" that missed the Earth:
  - the National Space Science Center of the Chinese Academy of Sciences in Beijing estimated:
    - trillions of dollars of damage
    - 4-10 years recovery time







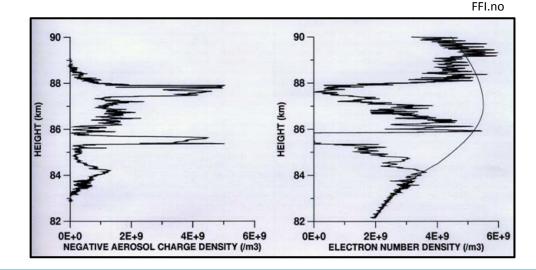

78

#### August 1972 mine explosions in Vietnam

- 2 and 4 August 1972, day-time radio blackouts, X-ray emissions lasting 16 hours
- USAF's Vela nuclear detonation detection satellites mistook that an explosion occurred, but the monitoring personnel identified the real source
- detonation of a 'large number' of sea mines dropped in North Vietnam coastal waters
  - magnetic sensors in the mines triggered,
     originally meant to detect passing metal ships



**KU LEUVEN** 

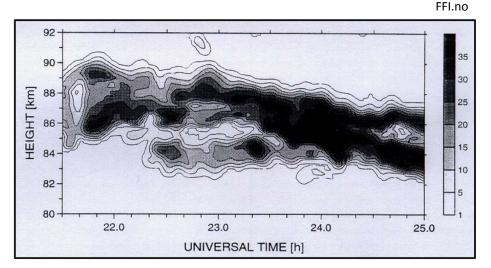

 $Definitions \rightarrow Radio \ comm. \rightarrow Spacecraft \rightarrow Power \ grid \rightarrow Special \ considerations \rightarrow Vulnerability \ of \ systems \rightarrow Are \ we \ ready? \rightarrow Recommendations \ otherwise \ systems \ systems \ otherwise \ systems \ otherwise \ systems \ otherwise \ systems \ otherwise \ systems \$ 

## 5. Special considerations

80

STCE SWIC, 18 - 20 September, 2023

- polar regions latitudes: frequent disruptions of signals
  - Polar Mesosphere Summer Echoes: PMSE
  - Noctilucent Clouds: NC
- due to large aerosol particles affecting electron density profiles
- can affect signal transmission to and from satellites



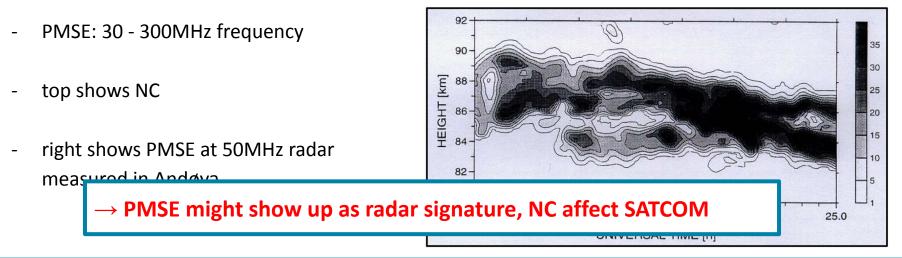

CDO

**KU LEUVEN** 

81

- polar regions latitudes: frequent disruptions of signals
  - Polar Mesosphere Summer Echoes: PMSE
  - Noctilucent Clouds: NC
- PMSE: 30 300MHz frequency
- top shows NC
- right shows PMSE at 50MHz radar measured in Andøya






#### STCE SWIC, 18 - 20 September, 2023

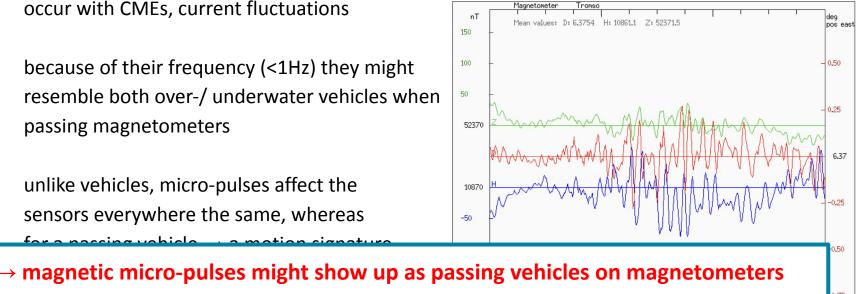
- polar regions latitudes: frequent disruptions of signals
  - Polar Mesosphere Summer Echoes: PMSE
  - Noctilucent Clouds: NC







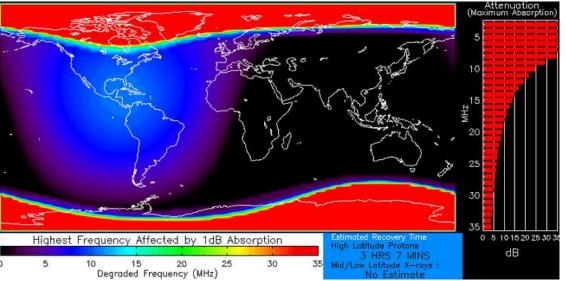



- polar regions latitudes: magnetic micro-pulses
- occur with CMEs, current fluctuations
- because of their frequency (<1Hz) they might resemble both over-/ underwater vehicles when passing magnetometers
- unlike vehicles, micro-pulses affect the sensors everywhere the same, whereas for a passing vehicle → a motion signature

#### Magnetometer Fromso nT deq Mean values: D: 6.3754 H: 10861.1 Z: 52371.5 pos east 150 100 0.50 50 0.25 52370 6.37 10870 -50 -100-0.50 -150 -0.7514 may, 2015



FFI.no

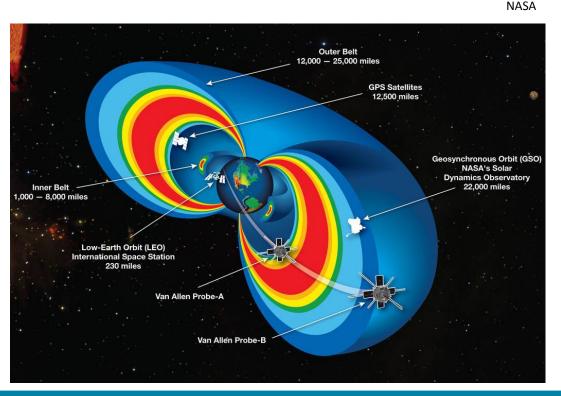

- polar regions latitudes: magnetic micro-pulses
- occur with CMEs, current fluctuations
- because of their frequency (<1Hz) they might resemble both over-/ underwater vehicles when passing magnetometers
- unlike vehicles, micro-pulses affect the sensors everywhere the same, whereas





FFL.no

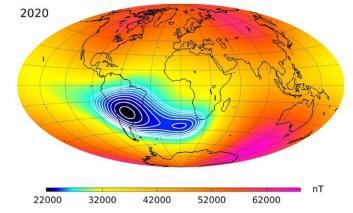
- polar regions latitudes: polar cap absorption: high energy protons from the Sun, leading to a massive ionisation in the D-layer
- disrupt or completely block frequencies of 2-30MHz
- scintillation at VHF and UHF
- known since 1956 (made HF impossible), wide in Antarctica in 1967

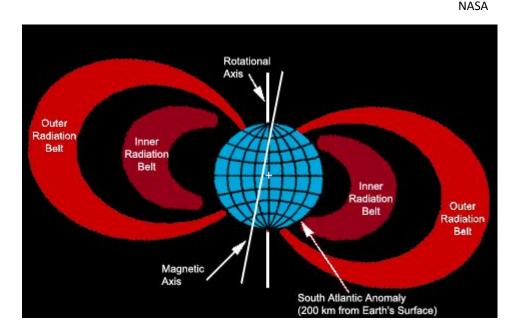



Spaceweather.com, SWPC



#### Special considerations: Radiation belts


- trapped (also solar wind)
   particles in the magnetosphere
   → Van Allen radiation belts
   around Earth
  - intersection MEO and GEO orbits
  - heightened radiation exposure
- higher E particles in the inner belt, lower E particles in the outer



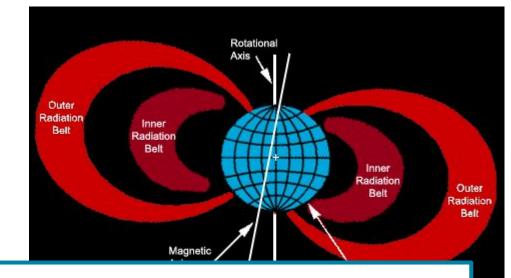



#### Special considerations: the South Atlantic Anomaly

 the belts are symmetric around the magnetic axis → asymmetric around the rotational axis → the inner belt comes only 200km of Earth surface in the South Atlantic Anomaly → more






ESA



#### Special considerations: the South Atlantic Anomaly

 the belts are symmetric around the magnetic axis → asymmetric around the rotational axis → the inner belt comes only 200km of Earth surface in the South Atlantic Anomaly → more

2020



#### $\rightarrow$ services above SAA and in MEO might be more prone to effects such as SEE

22000 32000 42000 52000 62000



89

Definitions  $\rightarrow$  Radio comm.  $\rightarrow$  Spacecraft  $\rightarrow$  Power grid  $\rightarrow$  Special considerations  $\rightarrow$  Vulnerability of systems  $\rightarrow$  Are we ready?  $\rightarrow$  Recommendations

# 6. Vulnerability of military systems

90

#### Determining vulnerability of a military system: F35 example

- Northrop Grumman AN/APG-81 active electronically scanned array radar: X band, 8 - 12 GHz (SHF)

- BAE Systems AN/ASQ-239 Barracuda electronic warfare system: S band to K band, 2 - 20 GHz (SHF)

- Northrop Grumman AN/ASQ-242 Integrated CNI suite: VHF to UHF

Svstem

Center)

Moderate Severe

#### Effects at mid-latitudes

| System    | Normal    | Moderate  | Severe                                                                              | Reason                                | Frequency      | Example                                  |
|-----------|-----------|-----------|-------------------------------------------------------------------------------------|---------------------------------------|----------------|------------------------------------------|
| VHF radio | No effect | No effect | Signal<br>degradation,<br>signal<br>polarization if<br>using linear<br>polarization | Scintillation,<br>Faraday<br>Rotation | 30 MHz–300 MHz | AN/PRC-<br>117G, AN-<br>PRC 52           |
| UHF radio | No effect | No effect | Signal<br>degradation                                                               | Scintillation                         | 300 MHz–3 GHz  | AN/PRC-<br>117G,<br>Iridium,<br>INMARSAT |

Source: LTC(R) Gregory Sharpe and MAJ Kenneth Rich (ALSSA

Reason

Frequency

Example

| eyetetti                                                 |           |                                                                                                                                    |                                                          |                                                                                              |              |       |
|----------------------------------------------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------|-------|
| SHF radio                                                | No effect | No effect                                                                                                                          | Signal<br>degradation<br>between 3 GHz<br>and 4 GHz only | Radio<br>frequencies not<br>effected by<br>ionosphere<br>density,<br>scintillation or<br>TEC | 3 GHz–30 GHz |       |
| Theater<br>ballistic<br>missile<br>defense<br>capability | No effect | Low<br>probability of<br>degraded<br>range and<br>elevation<br>angle<br>accuracy for<br>minutes to<br>hours after a<br>solar event | Degraded range<br>and elevation<br>angle accuracy        | replicate<br>increased                                                                       | 8–12 GHz     | THAAD |



#### Effects at polar-latitudes

| System    | Normal                                                                                                               | Moderate S                                                     | Severe                                                                                                                                                                                        | Reason                             | Frequency      | Example                                  |
|-----------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|----------------|------------------------------------------|
| VHF radio | Degraded<br>signal<br>during<br>daily<br>scintillation<br>periods,<br>possible<br>shift in<br>signal<br>polarization | periods,<br>possible shift ir<br>signal<br>polarization        | Degraded<br>signal<br>during daily<br>scintillation<br>periods,<br>degraded<br>signal for<br>minutes to<br>hours after<br>a solar<br>event;<br>possible<br>shift in<br>signal<br>polarization | Scintillation,<br>Faraday Rotation | 30 MHz–300 MHz | AN/PRC-<br>117G, AN-<br>PRC 52           |
| UHF Radio | Degraded<br>signal<br>during<br>daily<br>scintillation<br>periods                                                    | Degraded<br>signal during<br>daily<br>scintillation<br>periods | Degraded<br>signal<br>during daily<br>scintillation<br>periods,<br>degraded<br>signal for<br>minutes to<br>hours after<br>a solar<br>event                                                    |                                    | 300 MHz–3 GHz  | AN/PRC-<br>117G,<br>Iridium,<br>INMARSAT |

Reason Frequency Example Degraded signal during daily scintillation periods Degraded between 3 signal The maiority of Degraded GHz and 4 durina signal during radio frequencies GHz only, daily daily are not effected by degraded SHF radio scintillation scintillation ionosphere 3 GHz-30 GHz signal for periods periods density, minutes to between 3 between 3 GH; scintillation or total hours after GHz and 4 and 4 GHz only electron content solar event GHz only in frequencies between 3 GHZ and 4 GHz Low probability Degraded of degraded range and Theater range and elevation Models do not ballistic elevation angle angle replicate increased missile No effect 8-12 GHz THAAD accuracy for ionization levels in accuracy defense minutes to for hours ionosphere capability hours after after solar solar event event



**KU LEUVEN** 

Source: LTC(R) Gregory Sharpe and MAJ Kenneth Rich (ALSSA System Center)<sub>ial</sub> Moderate Severe Reason Frequency Example

#### Effects at equatorial-latitudes

Source: LTC(R) Gregory Sharpe and MAJ Kenneth Rich (ALSSA

|           |                                                                                                             | •                                                                                                          |                                                                       |                                    |                    |                                |                                          |                                                                                                                                                                                                                | ()                                                          | , ,                                                                                      |                                                                                                   |                 | `       |
|-----------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------|--------------------|--------------------------------|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------|---------|
| System    | Normal                                                                                                      | Moderate                                                                                                   | Severe I                                                              | Reason F                           | requency           | Example                        | System                                   | Center)                                                                                                                                                                                                        | Moderate                                                    | Severe I                                                                                 | Reason Fi                                                                                         | requency l      | Example |
| /HF radio | Degraded signal<br>during daily<br>scintillation<br>periods,<br>possible shift in<br>signal<br>polarization | Degraded signa<br>during daily<br>scintillation<br>periods,<br>possible shift in<br>signal<br>polarization | scintillation<br>periods,<br>degraded signa                           | Scintillation,<br>Faraday Rotation | 30 MHz–<br>300 MHz | AN/PRC-<br>117G, AN-<br>PRC 52 | SHF radio<br>Theater<br>ballistic        | Degraded signal Degraded<br>during daily during d<br>scintillation scintillat<br>periods between periods<br>3 GHz and 4 between<br>GHz only and 4 G<br>Low pro<br>of degra<br>range ar<br>elevation<br>accurac | during daily<br>scintillation                               | between 3 GHz<br>and 4 GHz only,<br>degraded signa<br>for minutes to<br>hours after sola | Majority of radio<br>frequencies not<br>effected by<br>ionosphere<br>density,<br>scintillation or | 3 GHz–30<br>GHz |         |
|           | Degraded signal<br>during daily                                                                             | al Degraded signa                                                                                          | Degraded signal<br>during daily<br>signal scintillation<br>y periods, |                                    | 300 MHz–3          | AN/PRC-                        |                                          |                                                                                                                                                                                                                | Low probability                                             | between 3 GHZ<br>and 4 GHz                                                               | IZ                                                                                                |                 |         |
| JHF radio | scintillation<br>periods                                                                                    | scintillation<br>periods                                                                                   | degraded signa<br>for minutes to<br>hours after sola<br>event         |                                    | GHz                | Iridium,<br>INMARSAT           |                                          |                                                                                                                                                                                                                | of degraded<br>range and<br>elevation angle<br>accuracy for | Degraded range<br>and elevation r<br>angle accuracy i                                    | replicate                                                                                         | 8–12 GHz        | THAAD   |
|           |                                                                                                             |                                                                                                            |                                                                       | c                                  | capability         | ŕ                              | minutes to<br>hours after solar<br>event | solar event<br>r                                                                                                                                                                                               | in ionosphere                                               |                                                                                          |                                                                                                   |                 |         |

94

#### Determining vulnerability of a military system: F35 example

- Northrop Grumman AN/APG-81 active electronically scanned array radar: X band, 8 12 GHz (SHF)
  - range and accuracy might degrade with moderate to severe storms
- BAE Systems AN/ASQ-239 Barracuda electronic warfare system: S band to K band, 2 20 GHz (SHF)
  - in mid-latitude regions such as Belgium, these frequencies are generally not affected by SWx
  - in polar and equatorial regions, these bands might respond to strong ionospheric scintillation
- Northrop Grumman AN/ASQ-242 Integrated CNI suite: VHF to UHF
  - at polar and equatorial latitudes might be sensitive to strong scintillation
  - VHF might also degrade for minutes to hours after strong geomagnetic events



 $Definitions \rightarrow Radio \ comm. \rightarrow Spacecraft \rightarrow Power \ grid \rightarrow Special \ considerations \rightarrow Vulnerability \ of \ systems \rightarrow Are \ we \ ready? \rightarrow Recommendations$ 

## 7. Are we ready?

ROYAL HIGHER INSTITUTE ISO-year think tank for D E F E N C E

96

STCE SWIC, 18 - 20 September, 2023

#### Are we ready yet?

- ongoing training of Space, Air Traffic and Defence operators (e.g. by ROB)
- the European Space Weather Office in construction
- PECASUS space weather advisory for airliners
- UK & USA power grids should be resilient: how about the north sea wind power hub?
- are critical infrastructures & technologies protected? Stakeholders will not disclose



#### JRC SCIENTIFIC AND POLICY REPORTS

#### Space Weather and Power Grids: Findings and Outlook

An event co-organised by the European Commission's Joint Research Centre, the Swedish Civil Contingencies Agency and the NOAA Space Weather Prediction Centre 29-30 October, 2013, Ispra, Italy



### Are we ready yet?

- space weather effects can be expensive
- PITHIA-NRF report (assuming a Carrington-like event):
  - LEO 10-100 satellites deorbit, 4 to 200 billion EUR
  - GEO services outage 1 to 14 days, 200 million to 2.6 billion EUR
  - A/C flight re-routing & canceling, 1 billion EUR

## Are we ready yet?

- current forecasting software: low reliability
- low frequency of Carrington-like events:
  - cost/ reliability trade-off
  - insufficient statistics



- difficult to certainly determine the origin of damage and estimate the actual economic costs of space weather, also due to business interests
- communication gaps: training of operators

 $Definitions \rightarrow Radio \ comm. \rightarrow Spacecraft \rightarrow Power \ grid \rightarrow Special \ considerations \rightarrow Vulnerability \ of \ systems \rightarrow Are \ we \ ready? \rightarrow Recommendations$ 

## 8. Recommendations

STCE SWIC, 18 - 20 September, 2023

#### Power system protection

- SWx have to be taken into account when designing the system
- several possible prevention & mitigation strategies:
  - installing GIC blocking elements
  - using transformers capable of handling temporarily higher currents
  - operating grids at reduced loading during loading
- most importantly, all critical infrastructure should have a backup power generator



#### **Current Belgian Defence strategy**

- I. Developing tailored SWx products in collaboration with partner SWx centres
- II. Training Defence personnel
- III. Opening additional positions for SWx coordination and support
- IV. Military accident investigation with SWx expertise

#### Short-term SWx preparedness

- I. Delaying/ fast-tracking operations if an event is expected
- II. Aviation operations might need adjustments to trajectories to prevent excessive radiation
- III. Switching to higher/ lower frequencies\* for communications or using multiple bands at the same time for redundancy
- IV. Satellite ISR can be replaced by airborne ISR
- V. When interpreting sensor and equipment data, keep SWx in mind

\*switching to lower HF radio frequencies during ionospheric depressions and high HF radio frequencies during solar flares



#### Long-term SWx preparedness

- I. Perform risk-assessment on critical military systems (vulnerability to SWx)
- II. Backing up all critical systems with diesel/ solar/ wind/ other power generators
- III. Ensuring that critical communication systems have sufficient diversity in them
- IV. Systems with GNSS time-synchronization designed to also operate with holdover technology
- V. Challenging service providers to determine the level of survivability of their systems
- VI. Where GNSS data is critical, using EGNOS or similar to monitor the level of error

#### What can we do better on the research side?

- Europe must perfect the R2O2R philosophy
- developers of SWx software are frequently PhDs and PostDocs at universities → they must know what is at stake and what is needed
- at the same time, the customers must keep providing useful feedback to the developers

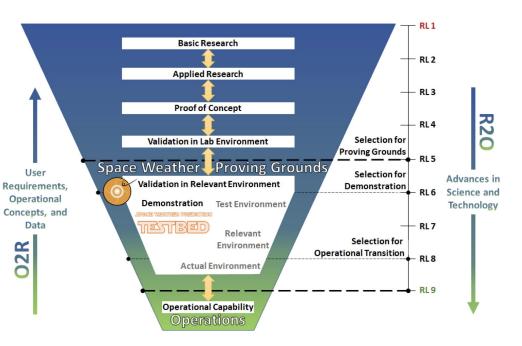



Figure 1: Research to Operations to Research Process (NOAA Example)



### Conclusions

- SW events have cost a lot of money and likely even claimed lives in the past
- stronger SW events can be more destructive, but even weaker ones can affect operations depending on the time, place & affected frequencies
- awareness of SW effects and forecasts of the personnel is key for ensuring both smooth operations and data interpretation & analysis
- elements of operations & infrastructure that can be sensitive to SW should be identified and, if possible, backed up appropriately or made more robust



SOLAR CELL DEGRADATION

SINGLE EVENT UPSET

SOLAR FLARE RADIATION

ENERGETIC RADIATION BELT PARTICLES

**HF RADIO WAVE DISTURBANCE** 

**KU LEUVEN** 

ENHANCED IONOSPHERIC CURRENTS AND DISTURBANCES

#### NAVIGATION ERRORS

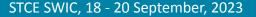
RADIATION DAMAGE

ESA

ASTRONAUT RADIATION

## Thank you for your attention!

SOLAR ENERGETIC PROTONS


<u>michaela.brchnelova@kuleuven.be</u> (until summer 2024) <u>m.brchnelova@gmail.com</u> (permanent)

SIGNAL SCINTILLATI

DISTURBED RECEPTION

GEOMAGNETICALLY INDUCED CURRENTS IN POWER SYSTEMS

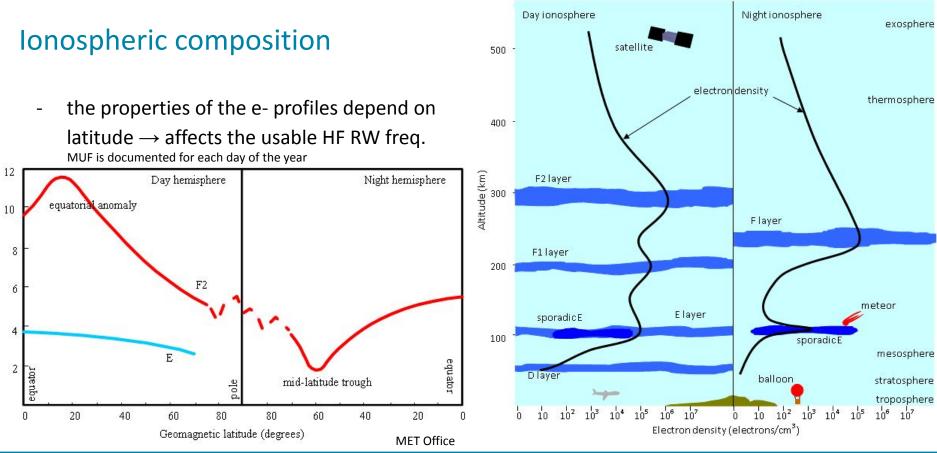
AURORA AND OTHER ATMOSPHERIC EFFECTS





107

## Appendix & details




STCE SWIC, 18 - 20 September, 2023

**MET Office** 

109

Definitions  $\rightarrow$  Radio comm.  $\rightarrow$  Spacecraft  $\rightarrow$  Power grid  $\rightarrow$  Special considerations  $\rightarrow$  Vulnerability of systems  $\rightarrow$  Are we ready?  $\rightarrow$  Recommendations

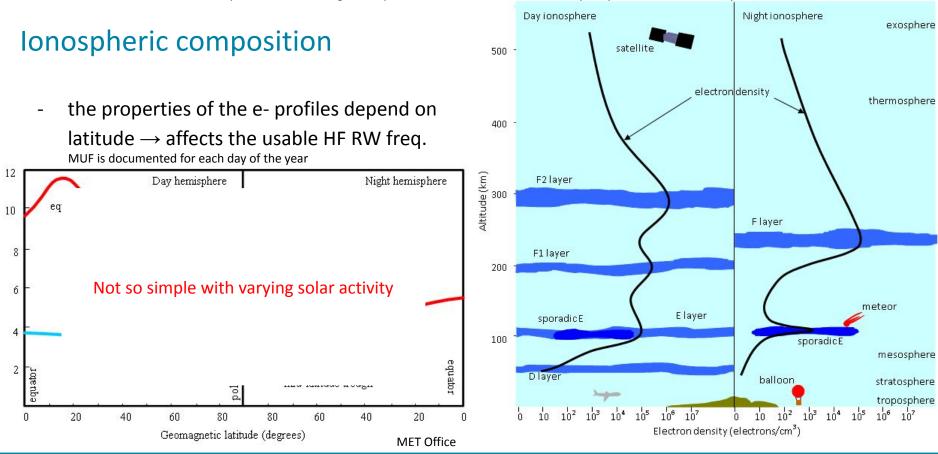


**ROYAL HIGHER** 

STITUTE

ear think tank

CDC


**KU LEUVEN** 

Maximum usable frequency (MHz)

**MET Office** 

110

 $Definitions \rightarrow \textbf{Radio comm.} \rightarrow Spacecraft \rightarrow Power grid \rightarrow Special considerations \rightarrow Vulnerability of systems \rightarrow Are we ready? \rightarrow Recommendations$ 



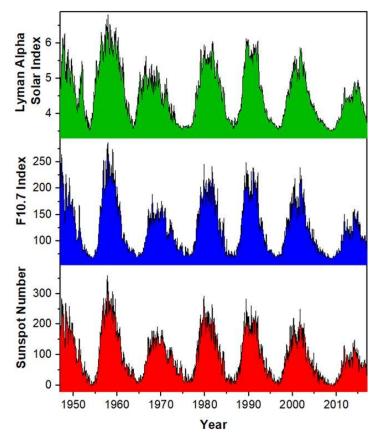
**ROYAL HIGHER** 

STITUTE

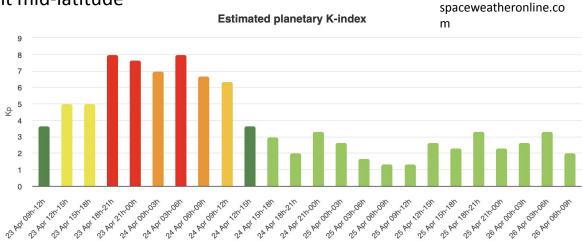
ear think tank

CDC

**KU LEUVEN** 

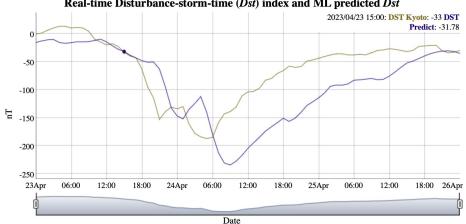

Maximum usable frequency (MHz)

## **Radio frequencies**


- ELF/SLF: submarines, but psychological issues, 3Hz 300Hz
- ULF: submarines, communication with mines, 300Hz 3kHz
- VLF: navigation & time signals (ground, sea, air), 3kHz 30kHz
- LF: navigation & time signals (ground, sea, air), long AM, 30kHz 300kHz
- MF: AM broadcasting, telegraphy, MRI, 300kHz 3MHz
- HF: over-the-horizon communication, CTI, citizen band radio, 3MHz 30MHz
- VHF: FM broadcasting, TV broadcasting, mobile comm., 30MHz 300MHz
- UHF: TV broadcasting, remote control systems, satellite signals, 300MHz 3GHz
- SHF: WLAN, radio astronomy, modern radars, satellite signals, 3GHz 30GHz
- EHF: radio astronomy, MW remote sensing, satellite signals, 30GHz 300GHz

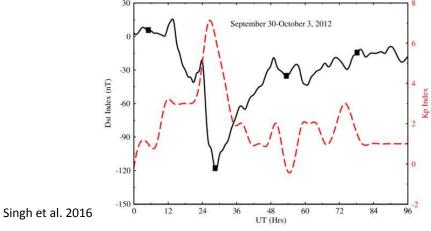
Singh et al. 2019

- F10.7 index (solar radio flux at 10.7cm) → excellent indicator of solar activity
  - from high chromosphere/ lower corona
  - corresponds with the sunspot number and UV irradiance
  - can be observed from the ground



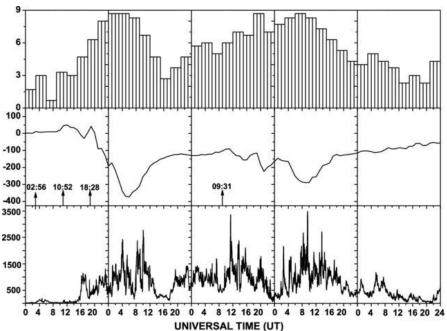

- F10.7 index (solar radio flux at 10.7cm)
- **Planetary K-index** (Kp)  $\rightarrow$  disturbances in the horizontal component of Earth's B-field, 0-9
  - derived from maximum fluctuations in the horizontal component during 3 hours intervals from 13 different mid-latitude
     Estimated planetary K-index
    - measuring stations
  - scale quasi-logarithmic
  - if daily average: A index






- F10.7 index (solar radio flux at 10.7cm)
- Planetary K-index (Kp)
- Disturbance storm-time index (Dst) → field variations in the horizontal component of the Earth's magnetic field measuring the strength of the ring current created by the drifts of charged particles
   Real-time Disturbance-storm-time (Dst) index and ML predicted Dst 2020/04/23 15:00: DST Kypt
  - measured hourly
  - from 4-5 near-equatorial stations
  - storm if under approx 50nT






- F10.7 index (solar radio flux at 10.7cm)
- Planetary K-index (Kp)
- **Disturbance storm-time index (Dst)**  $\rightarrow$  field variations in the horizontal component of the Earth's magnetic field measuring the strength of the ring current created by the drifts of charged particles
  - measured hourly
  - from 4-5 near-equatorial stations
  - storm if under approx 50nT
  - correlation with Kp





- F10.7 index (solar radio flux at 10.7cm)
- Planetary K-index (Kp)
- Disturbance storm-time index (Dst)
- Auroral Electrojet index (AE) → total deviation from the quiet day horizontal B field around the auroral oval, giving a measure of auroral zone magnetic activity
  - instantaneous basis
  - measures in high northern latitude stations (auroral)
  - correlates with Kp and Dst



Sahai et al. 2009

116

**KU LEUVEN** 

### Loss of satellite availability

- to protect a satellite electronics  $\rightarrow$  might be placed into "safe mode"
- then the satellite will not be functional for the ground force or any other users
- the Regional Satellite Communications Support Center (RSSC) or equivalent should notify the end users of pending safe mode operations
- the remaining SATCOM assets will be re-prioritised
- non-priority links might have to continue without SATCOM until solar activity lessens
- If ISR satellite is required but unavailable, the collection managers might need to request additional airborne ISR capability or wait until the solar activity lessens



### Quebec blackout of 1989

a table of \_ effects and affected systems during the 1989 13-14 March geomagnetic storm:

| u                                      | ιι    | וו    | 13        | 89                    |                                                 | 13   | 21.45 | 01.00    | 55                     | Wisconsin Power and<br>Light | Voltage problems, regulators hunting           |
|----------------------------------------|-------|-------|-----------|-----------------------|-------------------------------------------------|------|-------|----------|------------------------|------------------------------|------------------------------------------------|
|                                        |       |       |           |                       | <b>-</b>                                        | 13   | 21.51 | 22.11    | 53                     | Niagara Mohawk               | Capacitors tripped                             |
|                                        |       |       |           |                       | Boteler 2019                                    | 13   | 21.55 |          | 56.5                   | Minnesota Power              | Voltage fluctuations                           |
| Table                                  | Δ1    |       |           |                       |                                                 | 13   | 21.58 |          | 55                     | WAPA                         | Miles City line trip                           |
| Table of System Effects on 13–14 March |       |       |           | 13                    | 21.58                                           |      | 57    | BC Hydro | 4% voltage fluctuation |                              |                                                |
| Tubic                                  |       |       | 50115 141 | nuren                 |                                                 | - 13 | 21.58 |          | 51                     | BPA                          | Capacitor tripping                             |
|                                        | Time  | (UT)  | Geomag    |                       |                                                 | 13   | 21.58 |          | 55.5                   | Ontario Hydro                | Demand fluctuates by 200 MW                    |
| Date                                   | Start | End   | Latitude  | System                | Effect                                          | 13   | 21.58 |          | 55.8                   | West Kootney Power           | Alarms                                         |
| Date                                   | Start | Liiu  | Latitude  | System                | Effect                                          | 13   | 22.00 |          | 53                     | Iowa (IIGE)                  | Voltage fluctuations                           |
| 13                                     | 01.28 |       | 50        | TAT-8 submarine cable | 75-V voltage excursion                          | 13   | 22.00 |          | 56.5                   | UPA, Elk River, Mn           | Voltage fluctuations                           |
| 13                                     | 06.19 | 08.35 | 64        | Manitoba Hydro        | Voltage drops                                   | 13   | 22.00 |          | 51                     | Long Island Lt Co            | Voltage fluctuations                           |
| 13                                     | 06.19 |       | 56.5      | Minnesota Power       | Capacitor trips                                 | 13   | 22.01 |          | 55.5                   | Ontario Hydro                | Overvoltage alarm                              |
| 13                                     | 06.19 |       | 53        | Niagara Mohawk        | Capacitor tripped                               | 13   | 22.01 | 22.23    | 49                     | Virginia Power               | Capacitor tripped                              |
| 13                                     | 06.19 |       | 50.5      | PJM interconnection   | Alarms                                          | 13   | 22.08 |          | 56.5                   | UPA, Elk River, Mn           | Capacitor switching                            |
| 13                                     | 06.53 |       | 51.3      | Nebraska              | Frequency alarms                                | 13   | 22.09 |          | 55                     | WAPA                         | Miles City line trip                           |
| 13                                     | 07.33 |       | 51.3      | Nebraska              | Frequency alarms                                | 13   | 22.09 |          | 55.7                   | WAPA                         | Bole, Montana, transformer trip                |
| 13                                     | 07.40 |       | 51.3      | Nebraska              | Frequency alarms                                | 13   | 22.09 |          | 57                     | WAPA                         | Fargo SVC trip                                 |
| 13                                     | 07.40 | 07.50 | 57        | Eastern North Dakota  | Voltage fluctuations                            | 13   | 22.20 |          | 56.5                   | UPA, Elk River, Mn           | Voltage swing                                  |
| 13                                     | 07.43 | 07.45 | 56.5      | Minnesota Power       | Voltage fluctuation and capacitor trips         | 13   | 22.20 | 22.30    | 57                     | Eastern North Dakota         | Voltage fluctuations                           |
| 13                                     | 07.44 | 07110 | 55        | Vattenfall (Sweden)   | 130-kV lines tripped                            | 13   | 22.40 |          | 55                     | Vattenfall (Sweden)          | Oscillating reactive power                     |
| 13                                     | 07.45 |       | 60        | Hydro-Québec          | System-wide blackout                            | 13   | 22.42 |          | 50.5                   | PJM interconnection          | Alarm                                          |
| .3                                     | 07.45 |       | 55.5      | Ontario Hydro         | Generator trip                                  | 13   | 23.27 | 23.29    | 49                     | Virginia Power               | Capacitor tripped                              |
| 13                                     | 07.45 |       | 50.5      | PJM interconnection   | Swing in reactive power generation              | 13   | 23.30 |          | 51.4                   | Philadelphia                 | Voltage fluctuations                           |
| 13                                     | 07.46 |       | 57        | WAPA                  | Fargo SVC trip                                  | 13   | 23.32 |          | 53                     | NEPOOL                       | Capacitor tripped                              |
| 13                                     | 09.58 |       | 53        | New York Power Pool   | Generator trip                                  | 14   | 00.10 |          | 49                     | Virginia Power               | Capacitor tripped                              |
| 13                                     | 11.06 | 11.18 | 53        | Niagara Mohawk        | Capacitors tripped                              | 14   | 01.00 | 01.30    | 53                     | NEPOOL                       | Widespread voltage and MVAR swings             |
| 13                                     | 11.08 | 11.19 | 51        | Central Hudson        | Capacitor tripping                              | 14   | 01.00 | 02.00    | 51                     | Long Island Lt Co            | Voltage fluctuations                           |
| 13                                     | 11.10 | 11.17 | 50        | TAT-8 submarine cable | 300-V voltage excursion                         | 14   | 01.11 |          | 53                     | Niagara Mohawk               | Capacitor tripped                              |
| 13                                     |       | 11.30 | 50.5      | PJM interconnection   | Voltage and generation fluctuations             | 14   | 01.11 | 01.18    | 49                     | Virginia Power               | Capacitor tripped                              |
| 13                                     | 11.15 | 11.50 | 51        | Allegheny             | Seven capacitors tripped                        | 14   | 01.14 |          | 53                     | New York Power Pool          | Voltage drop                                   |
| 3                                      | 11.15 |       | 53        | Iowa (IIGE)           | Voltage fluctuations                            | 14   | 01.14 | 01.32    | 50.5                   | PJM interconnection          | Alarms and capacitors tripped                  |
| 13                                     |       | 11.25 | 49        | Virginia Power        | Capacitors tripped                              | 14   | 01.16 |          | 55.5                   | Ontario Hydro                | Belleville capacitor tripped                   |
| 13                                     | 12.27 | 13.19 | 50.5      | PJM interconnection   | Alarms and voltage dips                         | 14   | 01.16 |          | 55.5                   | Ontario Hydro                | Phase imbalance at Bruce                       |
| 3                                      | 14.26 | 13.19 | 64        | Manitoba Hydro        | Radisson-Churchill line tripped                 | 14   | 01.19 |          | 55                     | Wisconsin Electric           |                                                |
| 13                                     | 16.02 |       | 64        | Manitoba Hydro        | Radisson-Churchill line tripped                 |      |       |          |                        | Power                        |                                                |
| 13                                     | 16.31 |       | 64        | Manitoba Hydro        | Radisson-Churchill line tripped                 | 14   | 01.20 |          | 55.5                   | Ontario Hydro                | Chats Falls generator power fluctuations       |
| 13                                     | 16.59 |       | 64        | Manitoba Hydro        | Radisson-Churchill line tripped                 | 14   | 01.20 |          | 51                     | Allegheny                    | Transformer heating                            |
| 13                                     | 17.02 |       | 49        | Virginia Power        | Capacitor tripped                               | 14   | 01.20 |          | 50.5                   | Atlantic Electric            | Volt and MVAR fluctuations                     |
| 13                                     | 20.20 | 20.40 | 49        | NGC (United Kingdom)  | 30 alarms from BT standby generators            | 14   | 01.20 | 01.22    | 56.5                   | UPA, Elk River, Mn           | Alarms and line trip                           |
| 13                                     | 20.20 | 20.40 | 40<br>64  | Manitoba Hydro        | Radisson-Churchill line tripped                 | 14   | 01.20 |          | 57                     | Eastern North Dakota         | Voltage fluctuations                           |
|                                        |       |       | 51        | Central Hudson        |                                                 | 14   | 01.24 |          | 56.5                   | Minnesota (CPA)              | Voltage fluctuations, high-voltage alarms, cap |
| 13<br>13                               | 20.45 | 01.55 |           |                       | Capacitor tripping                              |      |       |          |                        |                              | and off                                        |
|                                        | 21.00 | 21.55 | 50.5      | Atlantic Electric     | Volt and MVAR fluctuations                      | 14   | 01.27 |          | 48                     | NGC (United Kingdom)         | Transformer at Norwich Main switched out       |
| 3                                      | 21.00 | 22.01 | 50.5      | PJM interconnection   | Alarms and capacitors tripped                   | 14   | 01.30 |          | 50                     | TAT-8 submarine cable        | 700-V voltage excursion                        |
| 13                                     | 21.00 | 22.30 | 48        | NGC (United Kingdom)  | Alarms at small control centers                 | 14   | 01.50 |          | 48                     | NGC (United Kingdom)         | Transformer at Indian Queens switched out      |
| 13                                     | 21.15 |       | 50.5      | PJM interconnection   | Generator trip                                  | 14   | 04.00 | 05.00    | 51.4                   | Philadelphia                 | Voltage fluctuations                           |
| 13                                     | 21.30 |       | 41        | SC Edison             | Increased neutral current and transformer noise | 14   | 04.00 | 05.00    | 51.4                   | . madeipind                  | · ····································         |

Time (UT) Geomag Date Start End Effect Latitude System Transformer at Norwich Main switched out 13 21.34 48 NGC (United Kingdom) 13 21.40 21.48 48 NGC (United Kingdom) 150 alarms from BT standby generators 13 21.43 55 Vattenfall (Sweden) 130-kV line tripped 13 21.44 55 Vattenfall (Sweden) Increased reactive power: max 540 MVAr 13 21.45 50 TAT-8 submarine cable 450-V voltage excursion 12 21 45 01 00 ... Wieconsin Power and Voltage problems, regulators hunting Capacitors tripped /oltage fluctuations Ailes City line trip % voltage fluctuation Capacitor tripping Demand fluctuates by 200 MW Alarms **/oltage** fluctuations Voltage fluctuations /oltage fluctuations Overvoltage alarm Capacitor tripped Capacitor switching Miles City line trip Bole, Montana, transformer trip Fargo SVC trip /oltage swing /oltage fluctuations Oscillating reactive power Alarm Capacitor tripped /oltage fluctuations Capacitor tripped Capacitor tripped Widespread voltage and MVAR swings /oltage fluctuations Capacitor tripped Capacitor tripped /oltage drop Alarms and capacitors tripped Belleville capacitor tripped hase imbalance at Bruce Alarms Chats Falls generator power fluctuations Fransformer heating Volt and MVAR fluctuations Alarms and line trip Voltage fluctuations /oltage fluctuations, high-voltage alarms, capacitors on and off



**KU LEUVEN**