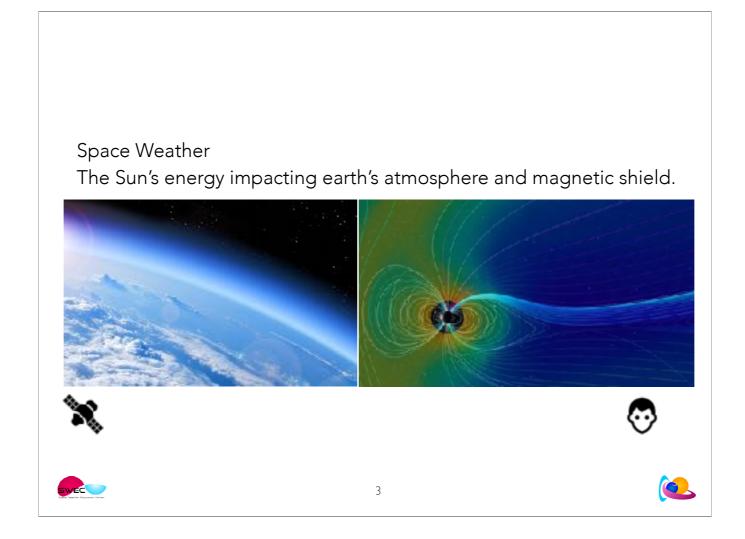
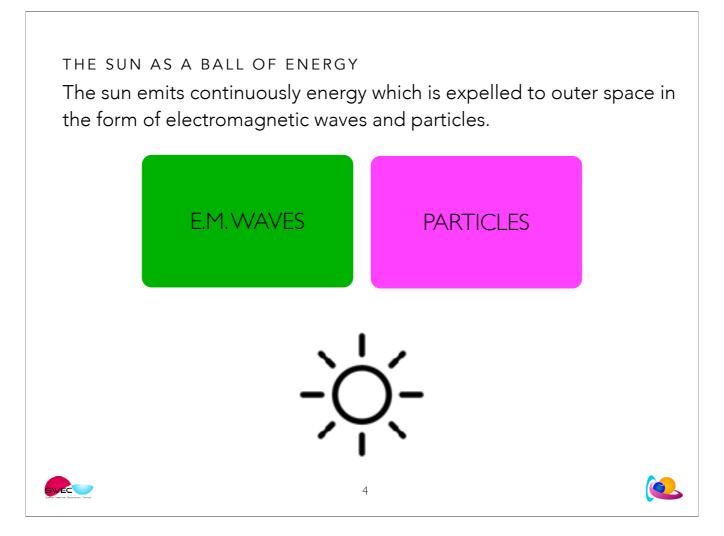

Space Weather impacts on Ionospheric wave propagation

Focus on GNSS and HF

SPACE WEATHER


Introduction

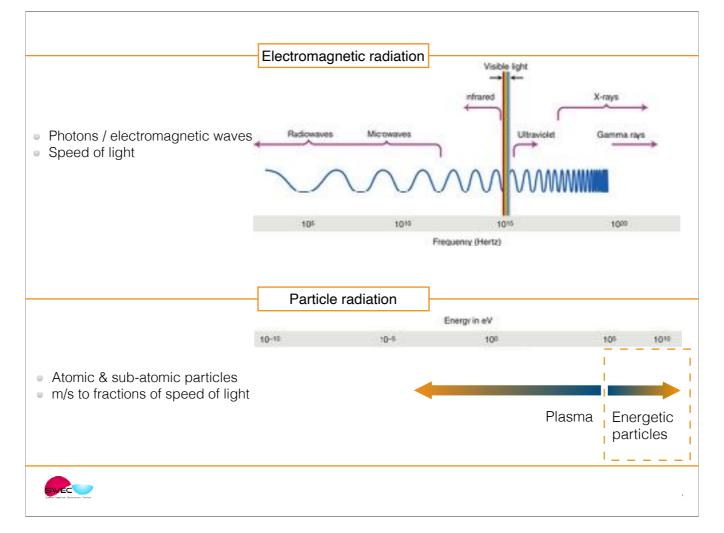
Petra Vanlommel



2

As we go out into space, the atmosphere becomes very thin, until by the time we are in space, it has almost vanished. Almost, but not quite. Even in space there are some atoms which are often moving very quickly. Many forms of energy also move through space and it is the interaction of energy and atoms that produces what we refer to as space weather. In particular, space weather is the changes that occur in the space environment.

The sun is the source of 'normal' terrestrial weather. It is also the primary (but not the only) source of space weather. Most aspects of space weather affect us to some extent. The more our society becomes dependent on technology and the more we utilize space, the more we are affected by space weather. Some aspects of space weather are benevolent, and allow activities not otherwise possible such as long range radio communications. Some aspects are benign but fascinating such as the Aurora, and some are malevolent. Like terrestrial weather, it depends on the situation and the event.


The sun is a gigantic ball of energy: magnetic energy, heat, moving plasma, ...

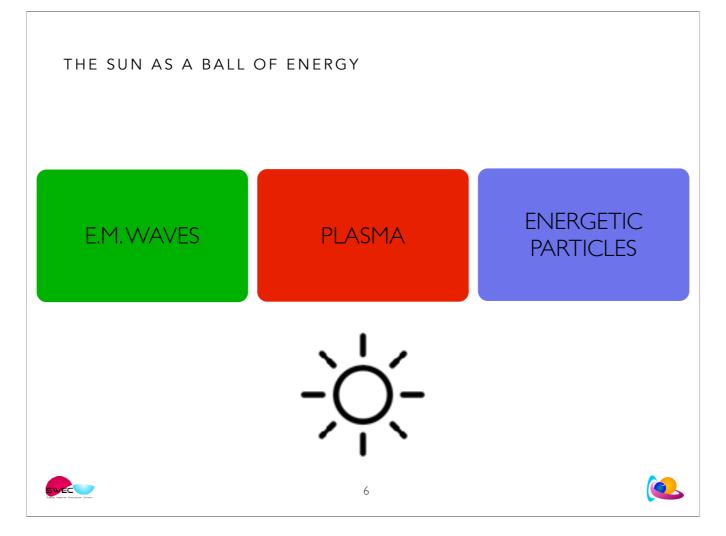
This energy is kept inside the Sun but also on its surface and in its atmosphere in magnetic structures like sunspots and magnetic loops, filaments or prominences ready to be released.

This energy is expelled, leaves the Sun to outer space and is carried away by electromagnetic waves and particles.

Note: the solar plasma is hot. The plasma particles bump on each other. These collisions changes their kinetic energy. This change is emitted in the form of thermal radiation, light photons. Once these photons are at the solar surface, they can escape and move freely.

Thermal radiation is electromagnetic radiation generated by the thermal motion of particles in matter. You have thermal motion as soon as the temperature is above absolute zero.

Electromagnetic radiation
Wave: wavelength, amplitude
Speed of light in vacuum
Doesn't need a medium to propagate
Doesn't need to follow magnetic field


Solar energetic particles

Ionizing radiation is a type of energy released by atoms that travels in the form of electromagnetic waves (gamma or X-rays) or particles (neutrons, beta or alpha). The spontaneous disintegration of atoms is called radioactivity, and the excess energy emitted is a form of ionizing radiation.

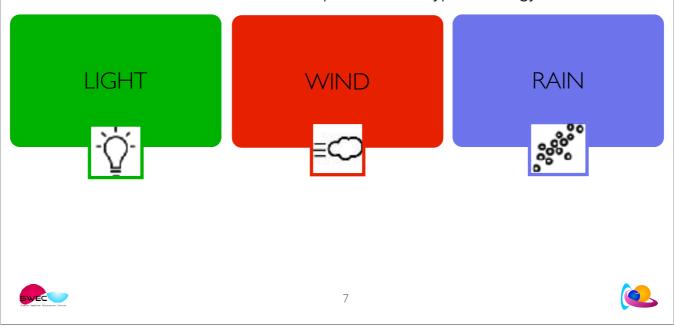
Ionizing radiation (or ionising radiation), including nuclear radiation, consists of subatomic particles or electromagnetic waves that have sufficient energy to ionize atoms or molecules by detaching electrons from them.[1] Some particles can travel up to 99% of the speed of light, and the electromagnetic waves are on the high-energy portion of the electromagnetic spectrum.

Gamma rays, X-rays, and the higher energy ultraviolet part of the electromagnetic spectrum are ionizing radiation, whereas the lower energy ultraviolet, visible light, nearly all types of laser light, infrared, microwaves, and radio waves are non-ionizing radiation. The boundary between ionizing and non-ionizing radiation in the ultraviolet area cannot be sharply defined, as different molecules and atoms ionize at different energies. The energy of ionizing

The sun is a gigantic ball of energy: magnetic energy, heat, moving plasma, ...

This energy is kept inside the Sun but also on its surface and in its atmosphere in magnetic structures like sunspots and magnetic loops, filaments or prominences ready to be released.

This energy is expelled, leaves the Sun to outer space and is carried away by electromagnetic waves and plasma.


Note: the solar plasma is hot. The plasma particles bump on each other. These collisions changes their kinetic energy. This change is emitted in the form of thermal radiation, light photons. Once these photons are at the solar surface, they can escape and move freely.

Thermal radiation is electromagnetic radiation generated by the thermal motion of particles in matter. You have thermal motion as soon as the temperature is above absolute zero.

3 SPACE WEATHER PHENOMENA

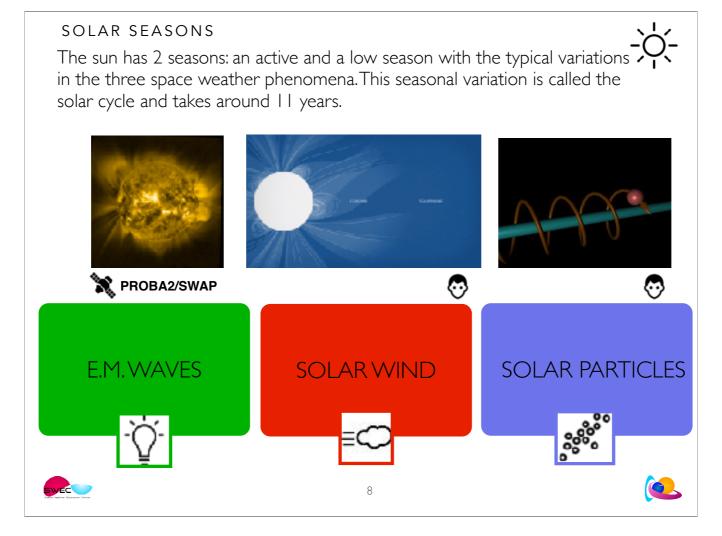
The sun's energy reaches the earth in 3 forms: light, moving gas and particle precipitation. This energy interacts with the magnetosphere and the atmosphere of the earth. This is space weather.

How and where the interaction occurs depends on the type of energy.

light= electromagnetic waves, energy transmitted in the form of photons/ EM waves

Wind= moving gas, in this case moving plasma

EPP = particle has high energy and precipitates along the geomagnetic field.


<100 kEV : plasma

 $Particle\ precipitation\ -\ energy\ transmitted\ \ in\ the\ form\ of\ fast-moving\ atomic\ or\ sub-atomic\ particles\ -->drizzle$

Energy expressed in eV= 1.602 10^-19 J

https://lasp.colorado.edu/home/mag/research/energetic-particle-precipitation/

Focus on solar energetic particles

The energy expelled in the form of solar material takes two forms: solar wind and solar particles.

The outward flow of solar particles and magnetic fields from the Sun. Typically at 1 AU, solar wind velocities are near 375 km/s and proton and electron densities are near 5 cm-3. The total intensity of the interplanetary magnetic field is nominally 5 nT.

TSI, e.m. radiation is not linked to the IMF. It doesn't follow the magnetic field lines. PROBA2/SWAP, the sun in the EUV.

However, plasma containing ions and electrons has to follow the magnetic field lines. Or you can also say that the magnetic field lines guide the plasma.

The solar wind plasma is glued to the IMF - or the IMF is glued to the plasma.

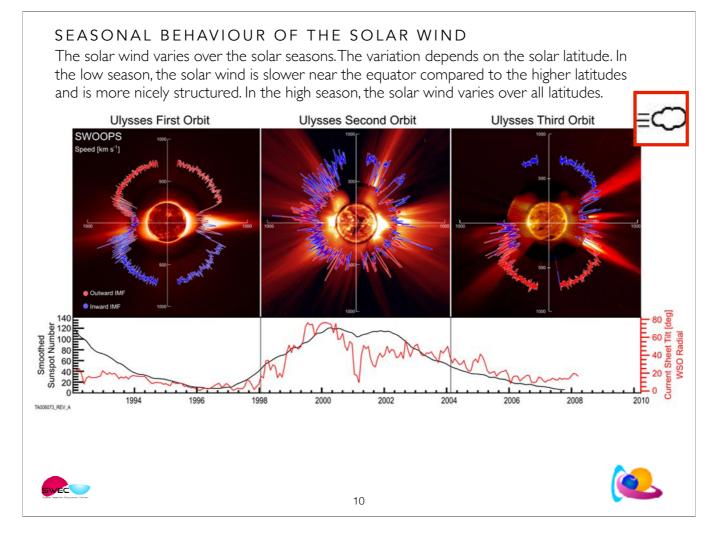
The plasma in the solar wind is considered as a gas, a group of particles behaving and moving in group. You don't speak about that particular particle in the solar wind, you speak about the solar wind, a whole bunch together.

Cartoon

Electrically charged particles have to follow the IMF. These electrically charged particles are considered as individuals and behave as individuals. Cartoon

Near Earth, the IMF still controls the solar wind and its movement. Much much further away from the Sun, the IMF becomes very weak and doesn't control the solar wind anymore. But, this is not important for us. At 1AU, the IMF influences the plasma and the plasma the IMF.

About the animated gif:


Conceptual animation (not to scale) showing the sun's corona and solar wind.

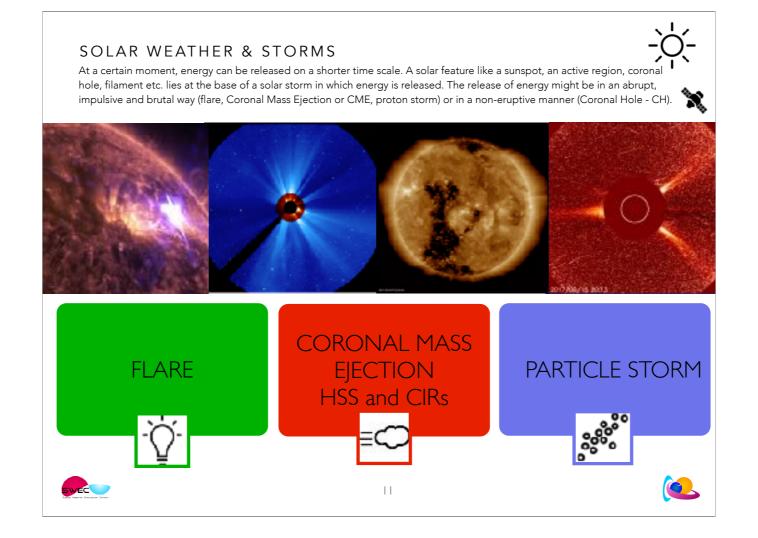
Credits: NASA's Goddard Space Flight Center/Lisa Poje

The solar wind is a continuous radial stream of solar plasma that leaves the sun and moves away from it. It fils the space between the planets with solar mass. The solar wind reaches the boundaries of the heliosphere, a magnetic shield around the Sun. In the heliosphere, the Sun sets the rules and you have solar weather. Outside the heliosphere, you have the rest of the galaxy. Earth is in the heliosphere.

A nice movie is found on https://www.nasa.gov/feature/goddard/2016/images-from-sun-s-edge-reveal-origins-of-solar-wind https://youtu.be/QYM2_ytkjQo

SEASONAL BEHAVIOUR OF LIGHT The solar irradiance, i.e. all the solar light, varies over the solar seasons. The sun radiates stronger in the high season compared to the low season. Composite TSI, absolute level = mean of DIARAD/SOVIM and TIM/TCTE 1365 1364 1363 TSI (W/m2) 1360 1359 2010 2015 Year 1362 Daily means 121 day running mean 9

Ulysses passing all latitudes measuring the solar wind speed. Ulysses made 3 orbits around the Sun.


It seems that the solar wind is not the same on all places of the solar disk, it depends on the latitude.

During solar minimum: more structured. Only near the equator, it looks like a mess.

During solar maximum: global and local magnetic field mingle strongly. The solar wind looks more like a mess.

Larger areas with fast solar wind streams. Fast solar wind streams are associated with coronal holes. These are regions with open magnetic field regions of the corona. While slow streams are associated with closed field regions primarily concentrated near the equatorial (or streamer) belt.

Solar minimum is the season of polar coronal holes extending to low latitudes.

Change in energy output on the scale of minutes, hours, days.

Remote sensing (seeing) - in situ (taste and touch the ambient space)

Space weather is the change of energy that occur in the space environment.

A Flare is a sudden strong increase of the solar e.m. radiation. The light flash is localised on the solar surface. SDO/AIA

A Coronal Mass Ejection is a plasma cloud that is ejected into space. You consider it as a cloud and not as a bunch of individual particles. It is superimposed on the background solar wind. You can see a CME as a complex magnetic bag with different magnetic layers with plasma in it that travels through space. It can go faster/as fast as/slower than the background solar wind. When it is faster, you will see a shock in front of the cloud. This is exactly the same as the shock you see in front of a speed boat.

A CME is visible as a white cloud in corona graphic images like the one on the slide. A coronagraph is a telescope that creates an artificial eclipse and makes pictures in the visible light of the region around the sun.

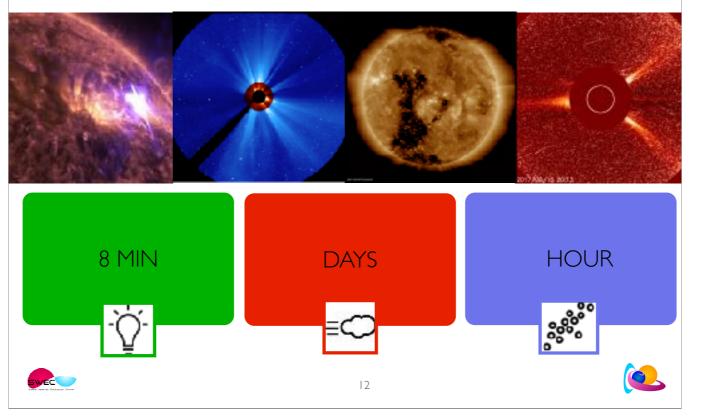
SOHO/LASCO C2 (red) and LASCO C3 (blue)

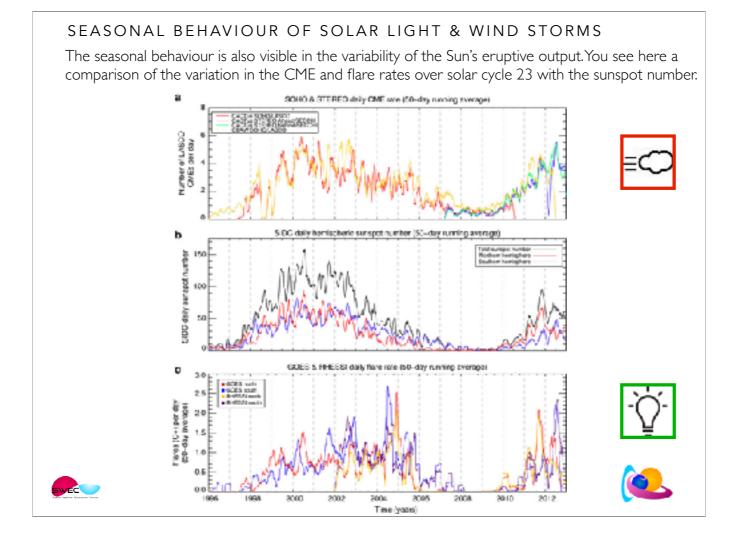
A coronal hole is a structure in the solar corona that you see as a black area in the EUV. It looks black because there is less plasma present that radiates in the EUV. The magnetic field lines are open, i.e. fan out into space. There are no magnetic loops above a coronal hole. The solar wind emanating from a CH is faster compared to the usual solar wind.

SDO/AIA

Particle shower

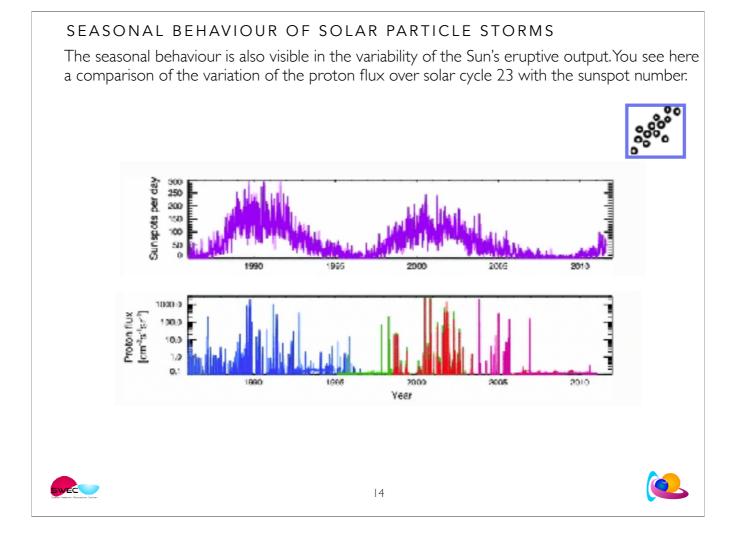
A particle storm is a bunch of electrically charged particles that are accelerated in the solar atmosphere to very high velocities by a large-scale magnetic eruption often causing a CME and/or solar flare. They follow the IMF


They may impact telescopes. They are seen as white stripes and dots: this are particles that fall into the lens and blind the pixel(s). During that particular moment, the telescope can't see anymore through the impacted pixels. You can say that the dots and stripes represent a sort of in situ measurement.


In situ means that you measure a parameter local. Remote sensing means that you look at something from a distance.

Near Earth, the IMF still controls the solar wind and its movement. If we would go much much further, the CME magnetic bag with solar plasma would be almost empty (all the solar material is spread over an immense volume) and the magnetic bag would have evaporated. But, this doesn't matter for us. We are at 1AU and at 1AU the IMF and solar plasma make space weather in a normal way, in an extreme way.

AU TRANSIT TIME


The energy released during a solar storm moves through space, each with its own typical speed: speed of light, order of a few 100 km/s, relativistic speeds.

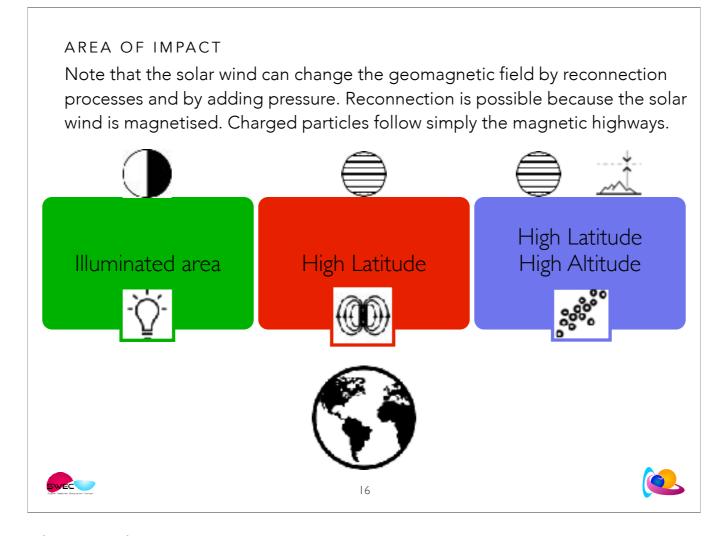
From https://www.researchgate.net/publication/274697133_The_solar_magnetic_activity_band_interaction_and_instabilities_that_shape_quasi-periodic_variability

Variability of the Sun's eruptive output over solar cycle 23. Comparison of the variation in the CME and flare rates over solar cycle 23 with the modulation in the (daily) sunspot number. (a) Variation in the (whole Sun) daily CME rates as detected by the CACTus44 and CDAW13 methods for the SOHO (red—CACTus; orange—CDAW) and the twin STEREO (blue—'ahead'; green—'behind') coronagraphic data sets. (b) SIDC- Solar influences data center. Total (black) and hemispheric (red—north; blue—south) daily sunspot numbers—compare with the monthly counterpart in . (c) Variation of the hemispheric daily rate of flares larger than 'B' magnitude in the GOES (red—north; blue—south) and RHESSI (orange—north; purple—south) records. As in , there is considerable lag between (total) sunspot maximum with the CME and flare series—occurring late in the descending phase. Almost every bump and wiggle in the sunspot number shows a corresponding surge in CME and flare activity—these surges can be as large amplitude as a doubling of the sunspot number or flare/CME rate over the course of only a few months before recovering. The panels of the figure show a set of dashed fine vertical lines that are 12 months apart and act as a timescale reference. Each timeseries shown in these panels is a 50-day running average over the original. The CME timeseries are not separated by hemisphere due to the uncertainty in determining the actual CME location from only plane-of-the-sky coronagraphic observations.

Less/More flares, CME's —> Less/More proton storms

From https://link.springer.com/article/10.1007/s10712-012-9201-3

Different indices for solar activity and energetic particle precipitation throughout the last 2 1/4 solar cycles. From top to bottom sunspot number per day, a proxy for solar activity; the Ap index, a proxy for geomagnetic activity linked to the precipitation of auroral particles; fluxes of relativistic electrons of energies >2 MeV in the radiation belts, merged data set using different GOES satellites; and fluxes of protons of energies >50 MeV as observed by particle counters onboard different GOES satellites (light blue GOES-6; dark blue GOES-7; green GOES-8; light red GOES-10; dark red GOES-11). Data are from the National Geophysical Data Center (http://www.ngdc.noaa.gov)



The consequence of a solar flare is a radio black out

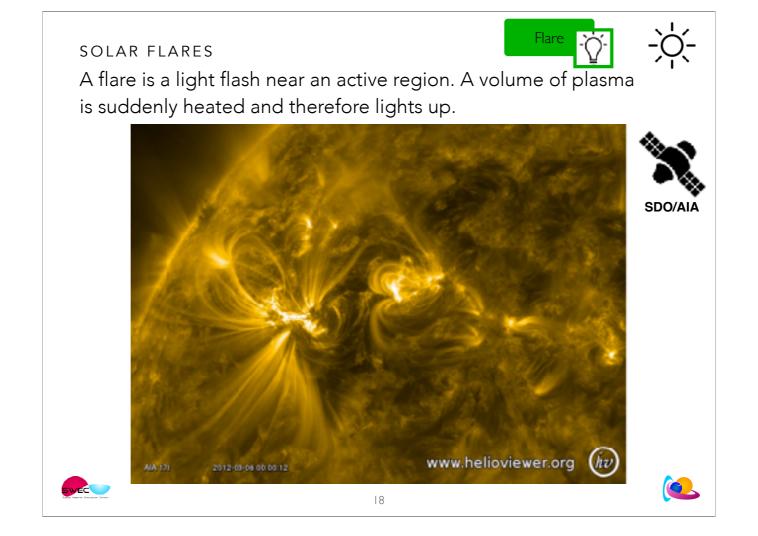
The consequence of a troubled solar wind, is a geomagnetic storm.

The consequence of a particle storm, is a solar radiation storm.

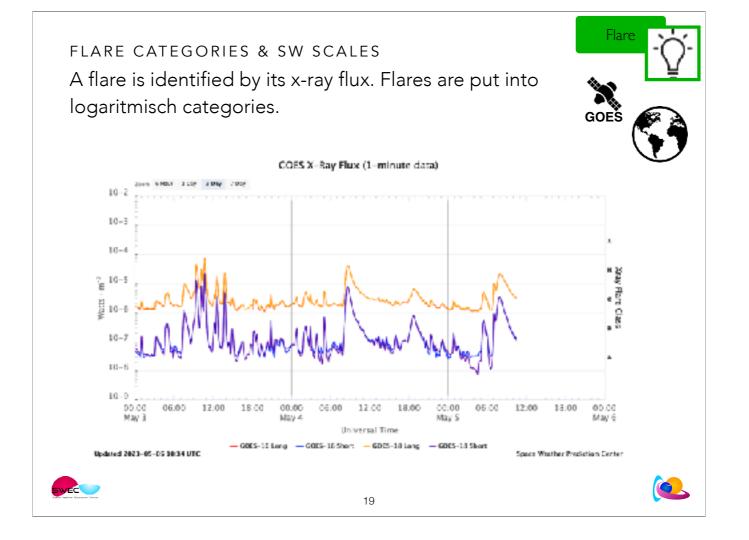
Not a geomagnetic storm. An individual particle doesn't carry a magnetic field that can couple or disturb the magnetic field of Earth.

Solar wind - day and night side because of reconnection processes. Particles - mainly on the day side.

The impact of a solar flare is a radio black out


The impact of a solar wind disturbance, is a geomagnetic storm.

The solar wind disturbs the earth magnetic field


The impact of a particle storm, is a solar radiation storm.

Not a geomagnetic storm. An individual particle doesn't carry a magnetic field that can couple or disturb the magnetic field of Earth.

Em waves Flow of gas Moving particles

During a solar flare a particular plasma volume is heated. This happens in a brutal way and during a limited time. The volume is heated up to 107 K. The heating is a consequence of a fast reconnection and reorganisation of the local magnetic field.

In situ (taste and touch)

```
C1=1*10-6
C2=2*10-6 or 2*C1
C3=3*10-6 or 3*C1
```

 $\begin{array}{l} M1 = 10 - 5 = 1*10*10 - 6 = 10*C1 = C10 \text{ or } 10*C1 \\ M2 = 2*10 - 5 = 2*10*10 - 6 = 10*C2 = C20 \text{ or } 20*C1 \\ M3 = 3*10 - 5 = 3*10*10 - 6 = 10*C3 = C30 \text{ or } 30*C1 \end{array}$

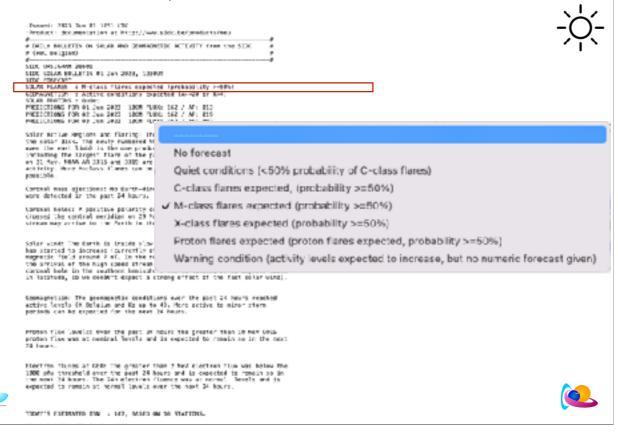
. . .

X1=10-4=1*10*10-5=10*M1=M10 = 1*10*10*10-6=100*10-6=100*C1=C100 X2=2*10-4=2*10*10-5=10*M2=M20 or 200*C1 ...

Y1=X10 or 1000*C1 Y2=X20 or 2000*C1 Y8=X80 or 8000*C1 Y9=X90

GOES satellite, geostationary http://www.swpc.noaa.gov/products/goes-x-ray-flux

During a flare, magnetic energy is transformed into e.m. waves.


GOES measures the full disk e.m. radiation (Energy per second per square meter) in a particular X-ray wavelength every minute. The more intense, the higher the curve.

Flares are put into X-ray flux categories. The X-ray flux is measured by GOES (meteo-satellites of NOAA). The classes are based on the enlargement factor of the X-flux in the spectral range 1 to 8 Å - logarithmic. This enlargement factor can go up to 10 000, typically between 10 and 100.

FLARE FORECAST

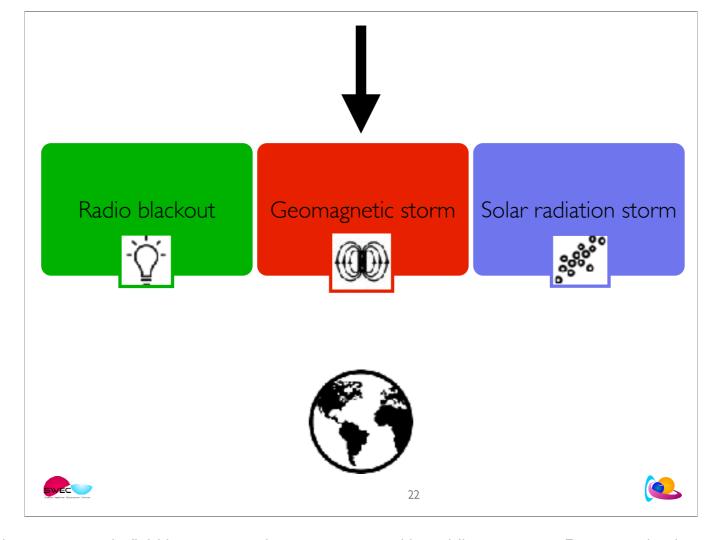
The sidc/STCE flare predictions refer to the full solar disk.

The Total flare forecast table is automatically computed based on your flare probabilities provided for every active region. Use your judgment to decide and eventually update the full disc probabilities.

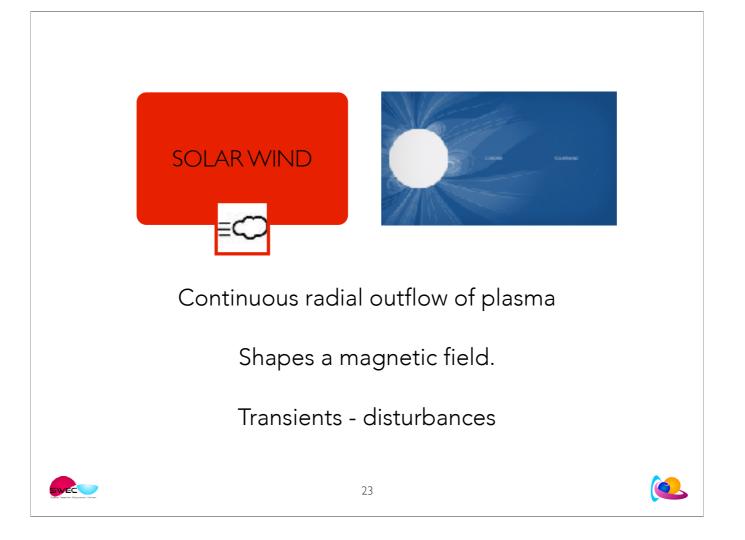
Forecasts of categorical variables may be either categories of the categories of the

Flare predictions refer to the full disc but only in the International Space Environment Service (ISES) categories: classes according to 50% threshold exceeded for C, M or X flares

Based on the regional probabilities that are inserted, previweb shows the computed full disc probabilities for C, M, X flares once based on the NOAA regions. These probabilities are themselves not distributed in the URSIgram. They are intended as a guidance to the forecaster to be consistent with the individual region forecasts, when choosing the full disc prediction. The forecaster must use his/her judgement to decide and enter the full disc probabilities. He/she can take into account additional regions expected to appear from behind the East limb or developing on disc. Based on the full disc probabilities the forecaster chooses the applicable ISES category based on passing the 50 percent threshold for the C/M/X flares.


https://www.swpc.noaa.gov/products/goes-x-ray-flux

Note that the solar wind can change the geomagnetic field by reconnection processes and by adding pressure. Reconnection is possible because the solar wind is magnetised. Charged particles follow simply the magnetic highways.

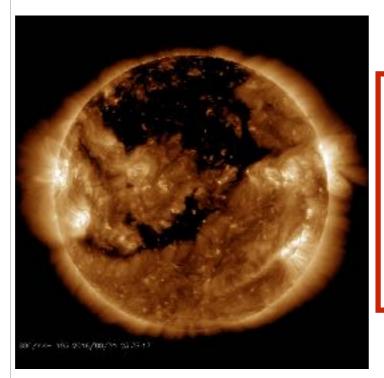

https://www.swpc.noaa.gov/phenomena/geomagnetic-storms

A geomagnetic storm is a major disturbance of Earth's magnetosphere that occurs when there is a very efficient exchange of energy from the solar wind into the space environment surrounding Earth. These storms result from variations in the solar wind that produces major changes in the currents, plasmas, and fields in Earth's magnetosphere. The solar wind conditions that are effective for creating geomagnetic storms are sustained (for several to many hours) periods of high-speed solar wind, and most importantly, a southward directed solar wind magnetic field (opposite the direction of Earth's field) at the dayside of the magnetosphere. This condition is effective for transferring energy from the solar wind into Earth's magnetosphere.

Storms also result in intense currents in the magnetosphere, changes in the radiation belts, and changes in the ionosphere, including heating the ionosphere and upper atmosphere region called the thermosphere. In space, a ring of westward current around Earth produces magnetic disturbances on the ground. A measure of this current, the disturbance storm time (Dst) index, has been used historically to characterize the size of a geomagnetic storm. In addition, there are currents produced in the magnetosphere that follow the magnetic field, called field-aligned currents, and these connect to intense currents in the auroral ionosphere. These auroral currents, called the auroral electrojets, also produce large magnetic disturbances. Together, all of these currents, and the magnetic deviations they produce on the ground, are used to generate a planetary geomagnetic disturbance index called Kp. This index is the basis for one of the three NOAA Space Weather Scales, the Geomagnetic Storm, or G-Scale, that is used to describe space weather that can disrupt systems on Earth.

During storms, the currents in the ionosphere, as well as the energetic particles that precipitate into the ionosphere add energy in the form of heat that can increase the density and distribution of density in the upper atmosphere, causing extra drag on satellites in low-earth orbit. The local heating also creates strong horizontal variations

in the ionospheric density that can modify the path of radio signals and create errors in the positioning information provided by GPS. While the storms create beautiful aurora, they also can disrupt navigation systems such as the Global Navigation Satellite System (GNSS) and create harmful geomagnetic induced currents (GICs) in the power grid and pipelines.


Both constitute the solar wind

The solar wind plasma is glued to the IMF - or the IMF is glued to the plasma.

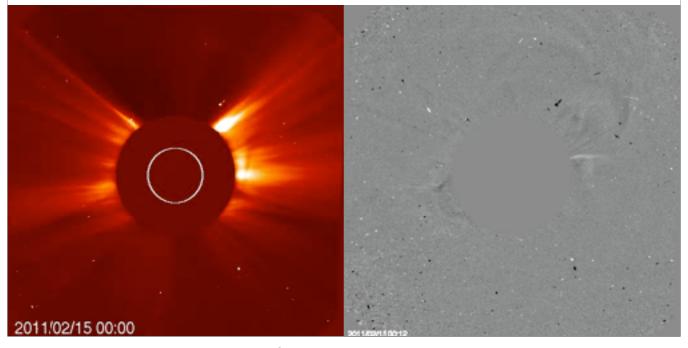
The solar wind is a continuous radial stream of solar plasma that leaves the sun and moves away from it. It fils the space between the planets with solar mass. The solar wind reaches the boundaries of the heliosphere, a magnetic shield around the Sun. In the heliosphere, the Sun sets the rules and you have solar weather. Outside the heliosphere, you have the rest of the galaxy. Earth is in the heliosphere.

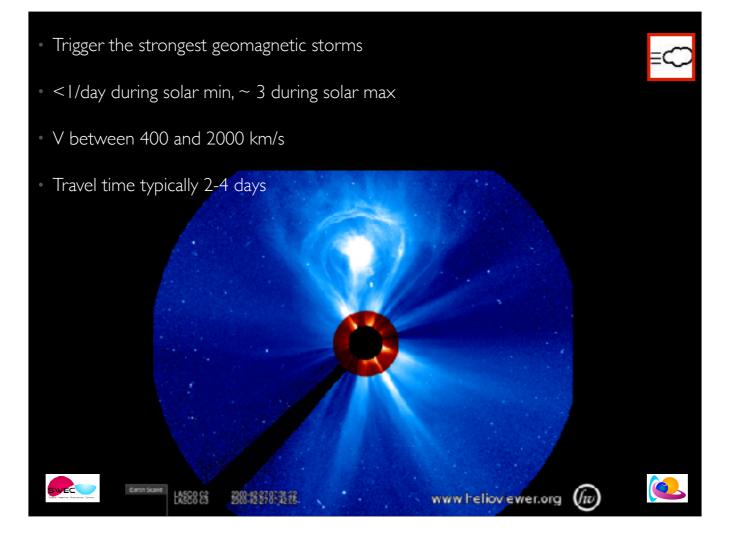
Transients in the solar wind: lasting for only some time, impermanent

Transients

High Speed Streams (HSSs)

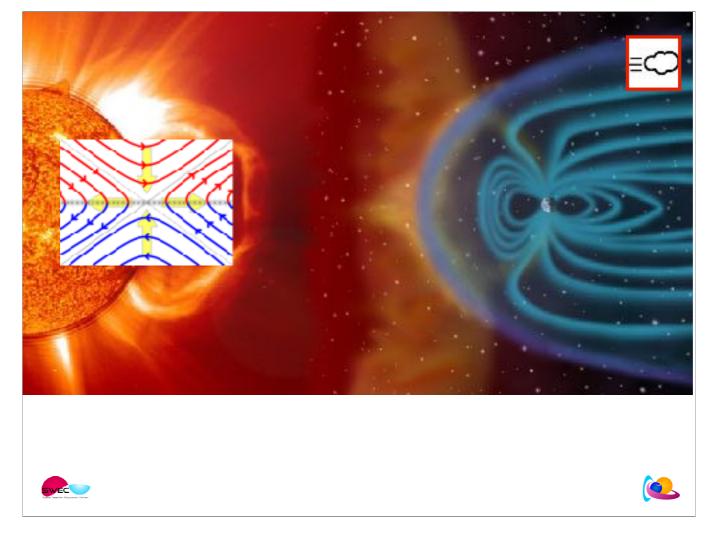
And


Co-rotating Interaction Regions (CIRs)



Transients

Coronal Mass Ejections



Transient: only lasting for a short time

Low density, but enormous and therefore massive.

CME is large: compare its size with the size of the sun.

This is the earths magnetosphere. The sun is somewhere far away in the right top corner.

The earth is a giant dipole - similar as the sun. Except, the solar magnetic dipole field reverses every 11 year. The Earths magnetic poles don't. They are already for ages like this.

The part of the earths dipole facing the sun/solar wind is pushed more together, while the part behind the earth is stretched and forms a tail. In front of the magnetic structure, you have a shock.

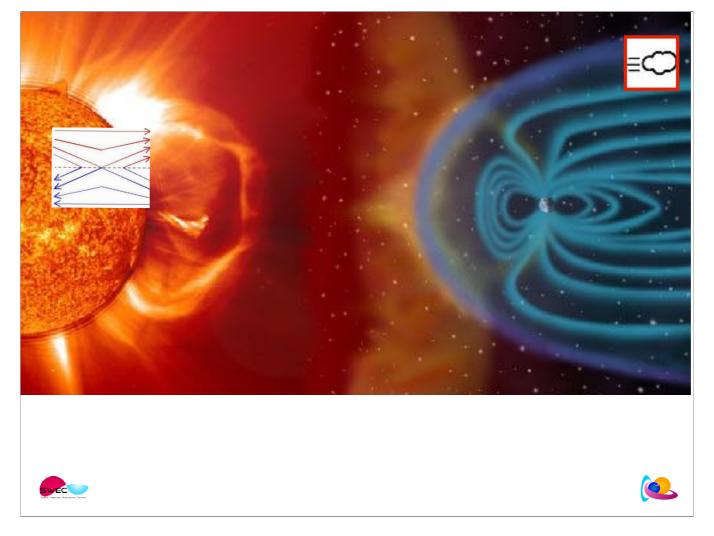
This is a structure similar like a shock in front of a speed boat that moves very fast over water: the water waves that the moving boat initiate are slower compared to the speed of the boat. The boat is super-water wave.

When a plane is super-sonic, there is also a shock in front of it. The pressure waves that the moving plane creates move much slower than the plane.

In the case of a speed boat, the boat moves through the water.

In our case, it is the solar wind that blows over the earth. It is just a matter of reference, but the result is the same: a shock.

A magnetic field is imbedded in the solar wind. This magnetic field can interact with the magnetic field of the earth at the boundaries of the earth magnetosphere. This interaction is called reconnection. It happens when 2 magnetic regions are confronted with each other.


The blue magnetic field lines are imbedded in the solar wind.

The red magnetic field lines represent the earth magnetosphere.

The blue and the red magnetic region have to face each other. Opposite magnetic field lines can reconnect easily and 'open'. This causes geomagnetic storms. Magnetic field lines in the same direction interact less.

Therefore, it is very important to know how strong the

0.3 T - solar sunspot 5mT - strength of a typical refrigerator magnet 31.869 μ T (3.1 \times 10⁻⁵ T) - strength of Earth's magnetic field at 0° latitude (North/South), 0° longitude (west/east) 1 to 5 nT - IMF at L1

This is the earths magnetosphere. The sun is somewhere far away in the right top corner.

The earth is a giant dipole - similar as the sun. Except, the solar magnetic dipole field reverses every 11 year. The Earths magnetic poles don't. They are already for ages like this.

The part of the earths dipole facing the sun/solar wind is pushed more together, while the part behind the earth is stretched and forms a tail. In front of the magnetic structure, you have a shock.

This is a structure similar like a shock in front of a speed boat that moves very fast over water: the water waves that the moving boat initiate are slower compared to the speed of the boat. The boat is super-water wave.

When a plane is super-sonic, there is also a shock in front of it. The pressure waves that the moving plane creates move much slower than the plane.

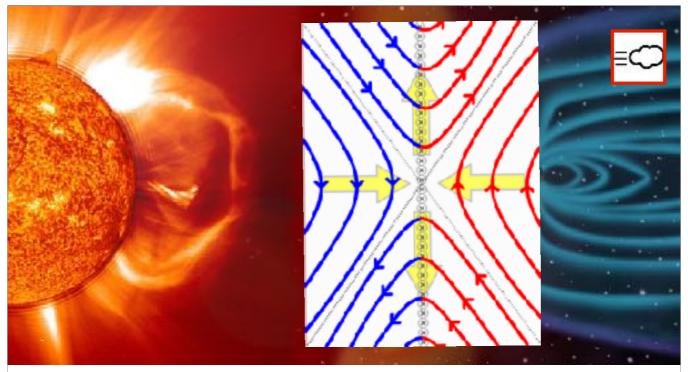
In the case of a speed boat, the boat moves through the water.

In our case, it is the solar wind that blows over the earth. It is just a matter of reference, but the result is the same: a shock.

A magnetic field is imbedded in the solar wind. This magnetic field can interact with the magnetic field of the earth at the boundaries of the earth magnetosphere. This interaction is called reconnection. It happens when 2 magnetic regions are confronted with each other.

The blue magnetic field lines are imbedded in the solar wind.

The red magnetic field lines represent the earth magnetosphere.


The blue and the red magnetic region have to face each other. Opposite magnetic field lines can reconnect easily and 'open'. This causes geomagnetic storms. Magnetic field lines in the same direction interact less.

Therefore, it is very important to know how strong the

0.3 T - solar sunspot 5mT - strength of a typical refrigerator magnet 31.869 μ T (3.1 \times 10⁻⁵ T) - strength of Earth's magnetic field at 0° latitude (North/South), 0° longitude (west/east) 1 to 5 nT - IMF at L1

Solar wind meets Earth Geoeffectivity

RECONNECTION

The magnetic field carried by the solar wind can couple with the magnetic field of Earth. This coupling is stronger when the solar wind magnetic field is opposite to the magnetic field of Earth.

Magnetic reconnection at the magnetosphere of Earth. Doesn't matter if the wind is linked with a CH or CME.

This is the earths magnetosphere. The sun is somewhere far away in the right top corner.

The earth is a giant dipole - similar as the sun. Except, the solar magnetic dipole field reverses every 11 year. The Earths magnetic poles don't. They are already for ages like this.

The part of the earths dipole facing the sun/solar wind is pushed more together, while the part behind the earth is stretched and forms a tail. In front of the magnetic structure, you have a shock.

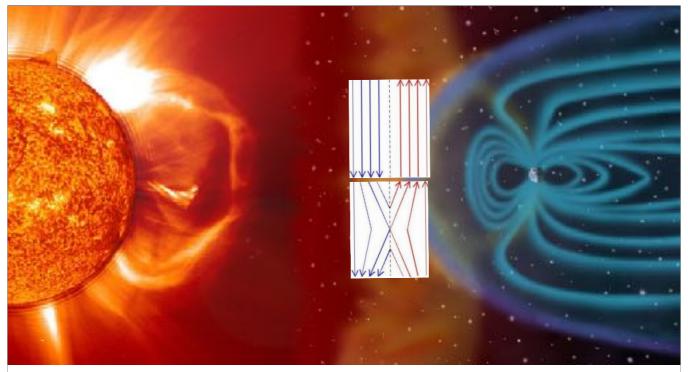
This is a structure similar like a shock in front of a speed boat that moves very fast over water: the water waves that the moving boat initiate are slower compared to the speed of the boat. The boat is super-water wave.

When a plane is super-sonic, there is also a shock in front of it. The pressure waves that the moving plane creates move much slower than the plane.

In the case of a speed boat, the boat moves through the water.

In our case, it is the solar wind that blows over the earth. It is just a matter of reference, but the result is the same: a shock.

A magnetic field is imbedded in the solar wind. This magnetic field can interact with the magnetic field of the earth at the boundaries of the earth magnetosphere. This interaction is called reconnection. It happens when 2 magnetic regions are confronted with each other.


The blue magnetic field lines are imbedded in the solar wind.

The red magnetic field lines represent the earth magnetosphere.

The blue and the red magnetic region have to face each other. Opposite magnetic field lines can reconnect easily and 'open'. This causes geomagnetic storms. Magnetic field lines in the same direction interact less.

Therefore, it is very important to know how strong the

0.3 T – solar sunspot 5mT – strength of a typical refrigerator magnet 31.869 μ T (3.1 \times 10⁻⁵ T) – strength of Earth's magnetic field at 0° latitude (North/South), 0° longitude (west/east) 1 to 5 nT – IMF at L1

RECONNECTION

The magnetic field carried by the solar wind can couple with the magnetic field of Earth. This coupling is stronger when the solar wind magnetic field is opposite to the magnetic field of Earth.

31

This is the earths magnetosphere. The sun is somewhere far away in the right top corner.

The earth is a giant dipole - similar as the sun. Except, the solar magnetic dipole field reverses every 11 year. The Earths magnetic poles don't. They are already for ages like this.

The part of the earths dipole facing the sun/solar wind is pushed more together, while the part behind the earth is stretched and forms a tail. In front of the magnetic structure, you have a shock.

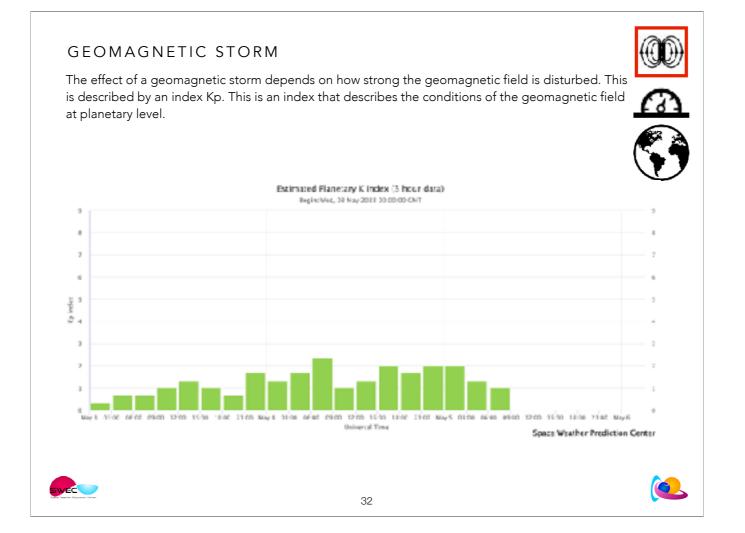
This is a structure similar like a shock in front of a speed boat that moves very fast over water: the water waves that the moving boat initiate are slower compared to the speed of the boat. The boat is super-water wave.

When a plane is super-sonic, there is also a shock in front of it. The pressure waves that the moving plane creates move much slower than the plane.

In the case of a speed boat, the boat moves through the water.

In our case, it is the solar wind that blows over the earth. It is just a matter of reference, but the result is the same: a shock.

A magnetic field is imbedded in the solar wind. This magnetic field can interact with the magnetic field of the earth at the boundaries of the earth magnetosphere. This interaction is called reconnection. It happens when 2 magnetic regions are confronted with each other.

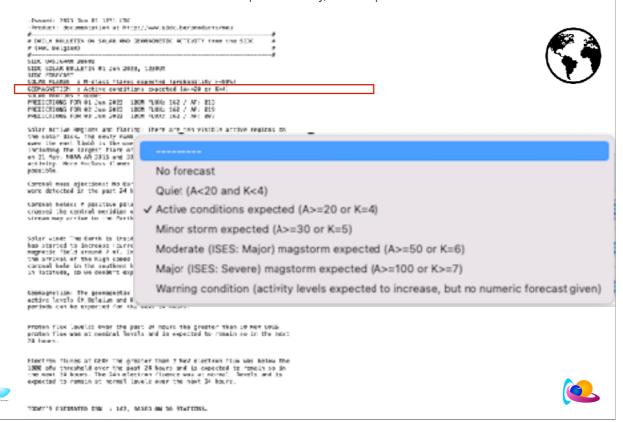

The blue magnetic field lines are imbedded in the solar wind.

The red magnetic field lines represent the earth magnetosphere.

The blue and the red magnetic region have to face each other. Opposite magnetic field lines can reconnect easily and 'open'. This causes geomagnetic storms. Magnetic field lines in the same direction interact less.

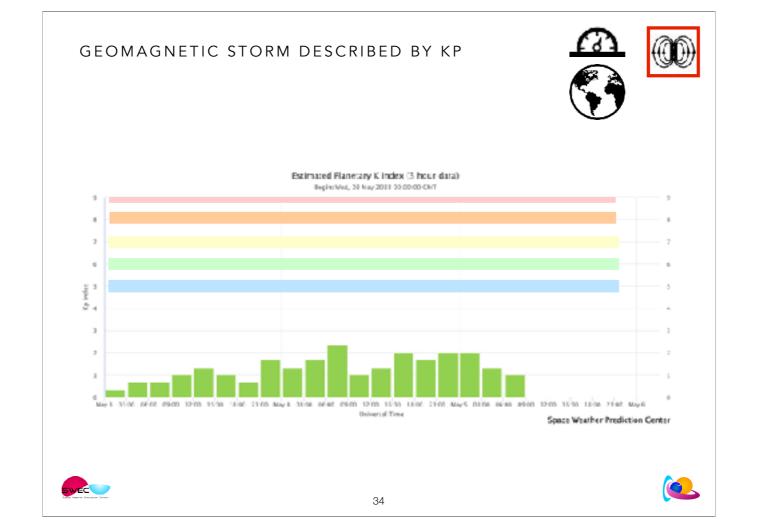
Therefore, it is very important to know how strong the

0.3 T – solar sunspot 5mT – strength of a typical refrigerator magnet 31.869 μ T (3.1 \times 10⁻⁵ T) – strength of Earth's magnetic field at 0° latitude (North/South), 0° longitude (west/east) 1 to 5 nT – IMF at L1



Magnetometers

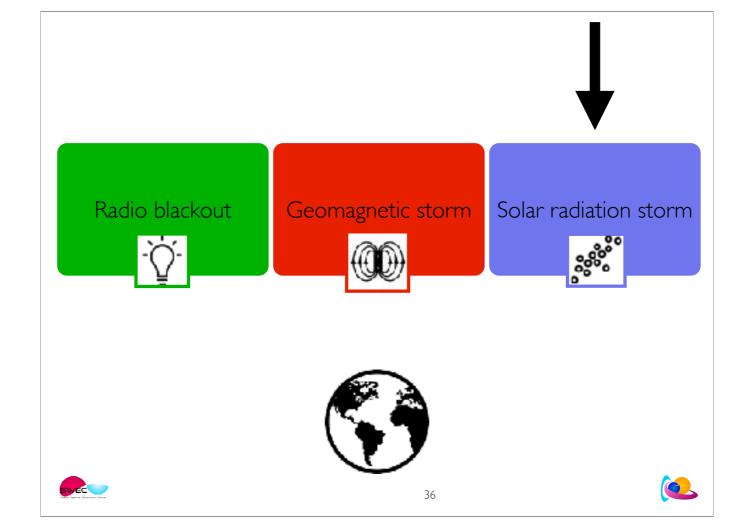
GEOMAGNETISM

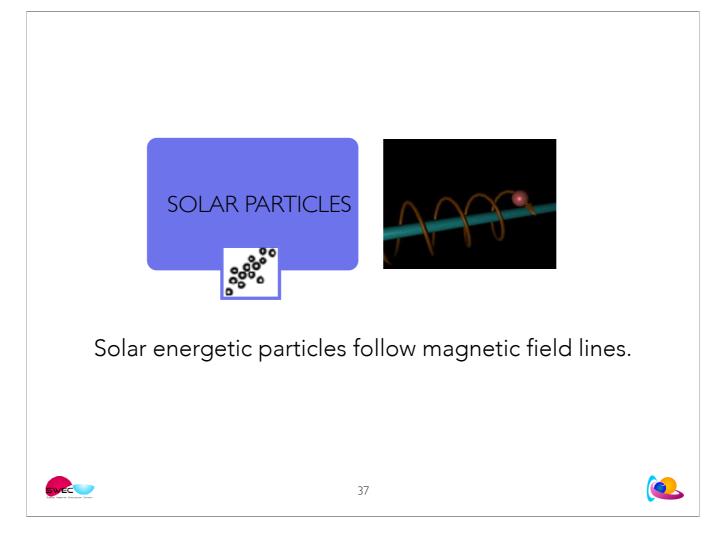

A K-index can be translated in an equivalent a-index value. The average of the a-indices over a day is called the A-index. Since K-index values are interpreted locally, the computed A-index is also local.

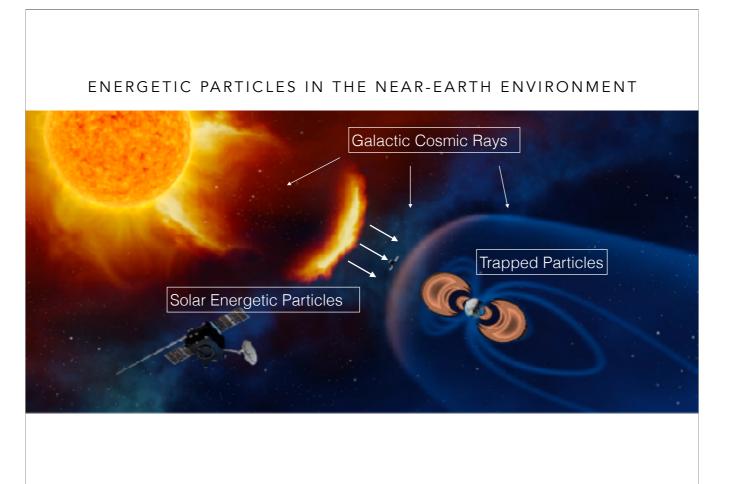
Careful!: The ISES scales are based on thresholds both in A-index and K-index values while one is a daily value and the other a 3 hourly value. This is ambiguous.

ak index - The local K index is a quasi-logaritmic index, and as such averages cannot be taken. This poses a problem when one wants to express geomagnetic activity over e.g. a day or a month. To this aim, a 3-hourly "equivalent amplitude" index of local geomagnetic activity was established, with "ak" related to the 3-hourly K index according to the scale underneath

Ak index - The Ak index for a station "k" is simply the average of the eight ak indices for that station for the UT day. The subscript "k" used on the Ak refers to the individual station, e.g. pending the context, AD, ADO, ADOUR, ... may all refer to the Dourbes A-index.



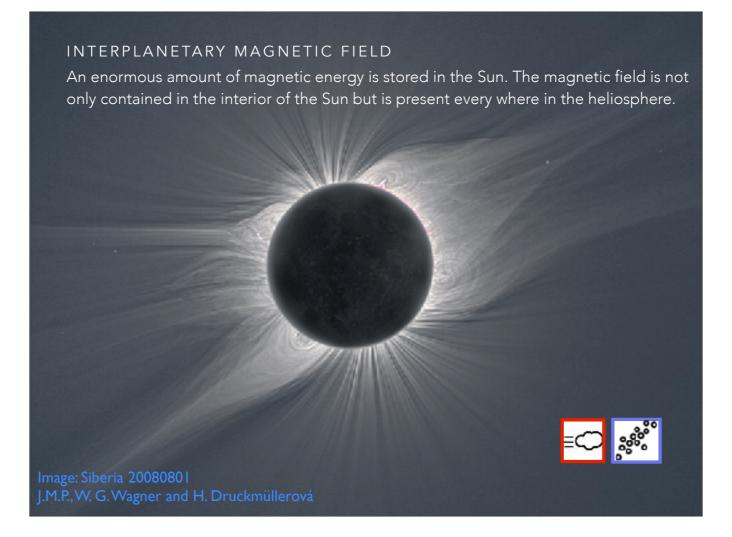

https://www.swpc.noaa.gov/products/planetary-k-index



They have to go where the magnetic field takes them.

38

GCR

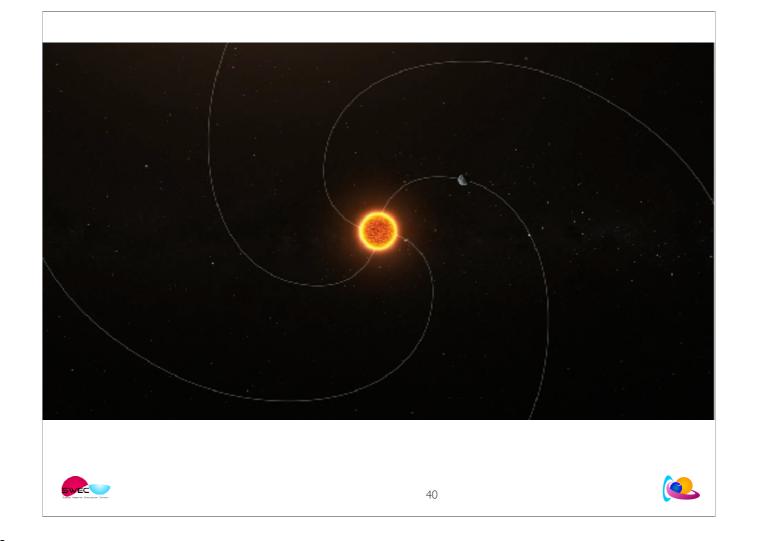

High energy charged particles produced outside the solar system

- ~ 83% protons, ~ 13% 4 He ions (alphas), ~3% electrons and ~1 % heavier nuclei
- E ~ MeV GeV and > TeV (extra galactic)

Omnidirectional flux modulated by solar activity

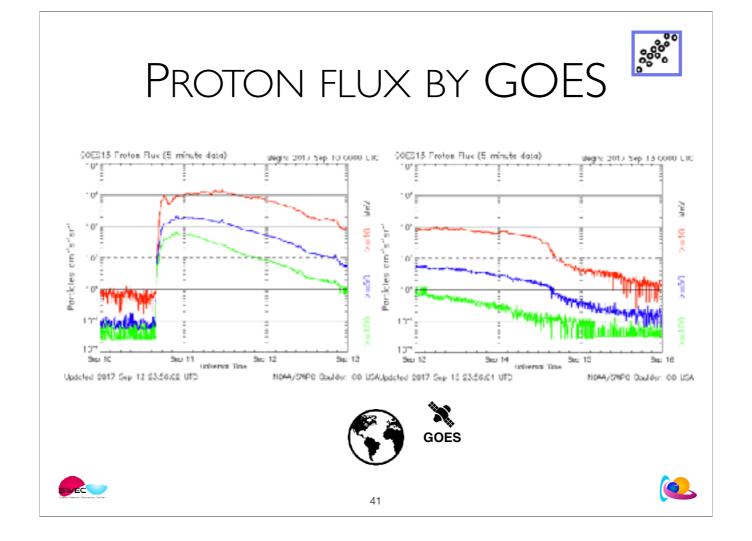
- Solar cycle: GCR max (min) @ solar min (max)
- Coronal Mass Ejection (CME) ? Forbush decrease (see later)

Solar energetic particles > 90% protons, electrons, heavy ions E: keV-GeV

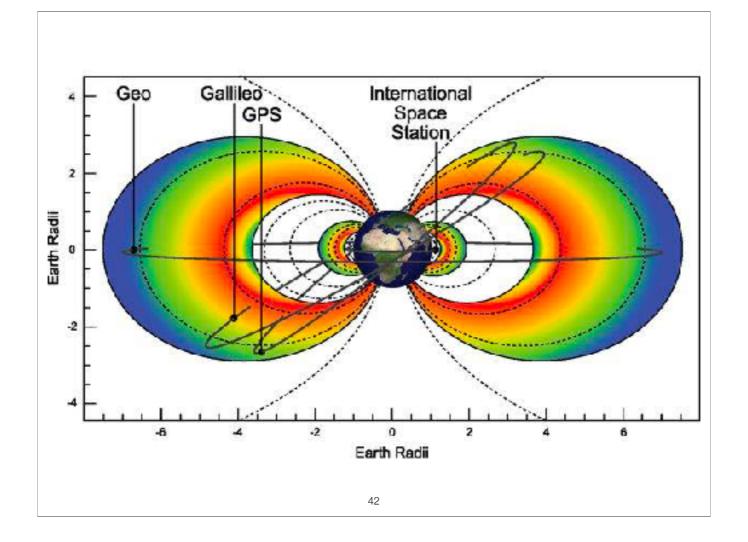


The interplanetary magnetic field plays a key role for the energy transport in the form of plasma.

Plasma is a charged gas. They have to listen to the magnetic field, which expels a force on moving electric particles.

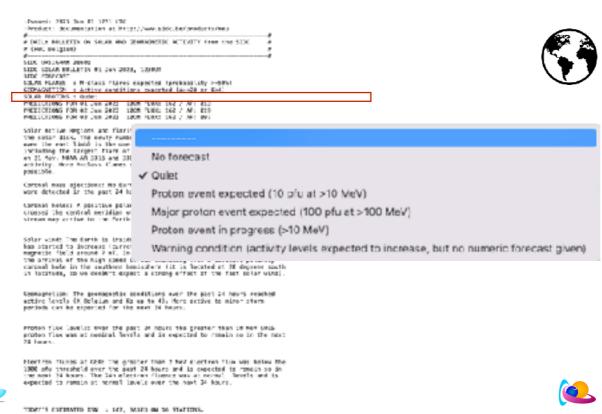

Magnetic signature visible here is at a large length scales.

Large spatial and time scale: Solar dipole - visible during a solar eclipse, near the solar surface, it is more pronounced at solar minimum. The dipole 'flips' every 11 years.



https://svs.gsfc.nasa.gov/20320

An intense solar eruptive event has many parts. This animation starts with a solar flare, which sends light and energy in straight paths, traveling at the speed of light. A coronal mass ejection, or CME, appears next - this is a giant cloud of solar particles that also expands in a straight direction with speeds up to two thousand miles an hour. The eruption also generates solar energetic particles, with speeds nearly reaching the speed of light, following the spiral shape of the solar wind's magnetic fields into interplanetary space.



In situ (taste and touch)

SOLAR PROTON FLUX BY GOES

PROTON FLUX NOW

https://www.swpc.noaa.gov/products/goes-proton-flux

44

https://en.wikipedia.org/wiki/Steradian

Steradian is a dimensionless unit, the 3D version of the 2D radian. Radian is the unit for a solid angle and links the angle to a length on a circumference.

For a circle
Circumference length = angle * radius
SI unit of length is m.
With angle in radian, dimensionless
The angle of a complete circle is 2*pi, the circumference of a circle with radius R is 2*pi*r

For a sphere

Sphere surface = area subtended * radius^2

SI unit of a surface is m^2

With area subtended in steradian, dimensionless

Area subtended of a complete sphere is 4*pi, the surface of a sphere with radius r is 4*pi*r^2

Flux is 'something' through a surface – everything in SI units.
E.g. magnetic flux: the number of magnetic field lines through a surface.
When 'something' moves, you speak about that something per second through a surface, a flow rate.
E.g. flow rate of a river: the volume water that flows per second through a m^2-surface.

Proton-flux has a direction. This is expressed by using the word steradian. You count all the protons that are present in the cone defined by the area subtended. The apex of the cone is the Sun.

You take only the perpendicular flow through the surface: so only the protons from the cone.

For a flux, you need a vector-field: magnetic flux, flow (velocity field)
It is the component perpendicular to the surface that contributes to the flux. The component parallel to the surface doesn't contribute to the flux. In our case, it is the cone with apex located at the Sun (which is a simple point at such a distance).