

Space weather risks: the military user's perspective

Michaela Brchnelova <u>michaela.brchnelova@kuleuven.be</u> (<u>m.brchnelova@gmail.com</u> after summer 2024)

1

Content

Military radio systems: analysis and resilience

Military radar systems: analysis and resilience

Examples of vulnerabilities (Belgium)

Land component

Naval component

Air component

Recommendations

Short-term preparedness

Long-term preparedness

Space weather (SW) effects risks

- chance/likelihood: a probability of an event in a given timespan

risk = chance x cost

- cost may be political, military, societal, financial, economic etc.
- when evaluating SW risks, looking at the probability alone is often not enough
- the resulting risks are organisation- and platform-dependent, depending on the procedures in place, the protocols and the diversity/ redundancy in available systems
 - \rightarrow DISCLAIMER: here I only provide my personal view on the risks

Band designation

- three different commonly-used band designations - IEEE, ITU and NATO/ EU
- here: depending on the system's provider preference, frequencies/ frequency ranges always stated

	Eronuopeu IEEE Band	European Onion, NATO, 05			
	Frequency	IEEE banu	ECM	ITU Band	ITU Abbreviation
	0.3 Hz				
Band designation	3 Hz			1	ELF
	30 Hz			2	SLF
	300 Hz			3	ULF
	3 kHz			4	VLF
	30 kHz			5	LF
 three different commonly-used band 	300 kHz			6	MF
designations IEEE ITH and NATO/FIL	3 MHz	HF		7	HF
designations - IEEE, ITO and NATO/ EO	30 MHz	VHF	- 8	VHF	
	250 MHz		в		
	300 MHz	UHE			
 here: depending on the system's 	500 MHz		С	9	UHF
provider preference, frequencies/	1 GHz	L	D		
provider preference, requencies,	2 GHz	S	E		
frequency ranges always stated	3 GHz	-	F		
	4 GHz	GHz C - GHz A C - GHz X - GHz A C -	G	10	SHF
	6 GHz		Н		
	8 GHz		I		
	10 GHz		ј к		
	12 GHz	Ku			
	18 GHz	К			
	20 GHz				
	27 GHz				
	30 GHz		2		
	40 GHz	v	L	11	EHF
	60 GHz		м		
	75 GHz	w			
	100 GHz				
STCE SWIC, 6 December, 2023, michaela.brchnelova@kuleuv	110 GHz	mm			
	300 GHz			12	THF
	3 THz				

IT11

Military radio systems

Space weather impacts on radio waves

- two main types of interference:
 - transionospheric effects (sky wave, space wace)
 - radio bursts (ground wave)

Space weather impacts on radio waves

- two main types of interference:
 - transionospheric effects (sky wave, space wave)

- due to phenomena such as:
 - travelling ionospheric disturbances
 - short wave fade-outs
 - plasma bubble
 - polar cap absorption, etc.

Credit: MET Office

defocussing

focussing

Space weather impacts on radio waves

- two main types of interference:
 - transionospheric effects (sky wave, space wave)
 - radio bursts (ground wave)

Solar radio bursts

- 30 a variety of types, depending ٢ on the origin (CME, active regions, solar flares, combined, etc.)
- have different radar signatures, some (especially IV) can **blind** radars completely for a significant period of time \rightarrow shows as **static in radio**
- radar blinding at lower frequencies not just due to solar bursts:
 - polar mesospheric summer (and winter!) clouds = PMSE, visible in polar regions on

30 MHz to 300 MHz

Decimetric

IV

СE

Ι

(m

🛛 Storm

80

inutes)

Microwave

S

TIME

3000 ŝ

300

10

ΜH 1000

U U

z

ш 100

∍

O

Radio/ radar effects

- radar blinding: e.g. 1967 (Alaska), 2015 (Sweden)
- radio noise

Solar radio bursts: expected frequencies?

- strong radio bursts 1966 - 2017 from a variety of stations, based on frequency

Frequency (MHz)	Number of bursts observed	Burst rate (bursts/year)
245	15,251	421
410	5,056	147
610	3,449	91
1,415	1,942	52
2,695	1,864	49
4,995	2,395	64
8,800	2,807	75
15,400	2,216	59

Credit: Giersch et al. 2017


```
Credit: Giersch et al. 2017
```


Space weather impacts on radio waves

- two main types of interference:
 - transionospheric effects (sky wave, space wave) \rightarrow HF
 - radio bursts (ground wave) \rightarrow HF, VHF, UHF, SHF ...

High frequency effects

- HF (3 MHz to 30 MHz) mostly used for ionospheric refraction to increase the range → beyond line-of-sight (BLOS) / over-the-horizon (OTH) communication
 - \rightarrow signal quality and reception directly dependent on ionospheric conditions

Example HF radio systems

- AN/VRC-104 vehicle mounted radio:
 - on some of the new generation combat vehicles
- AN/ARC-190 airborne radio:
 - found on a large variety of current aircraft, e.g., B-52, C-5, C-9, E-3, E-8
- AN/PRC-150 Falcon II manpack radio:
 - currently used by US Marine Corps, US SOCOM and USAF

Credit: US Marine Corps

16

Example HF radio systems

- AN/VRC-104 vehicle mounted radio:
 - on some of the new generation combat vehicles
- AN/ARC-190 airborne radio:
 - found on a large variety of current aircraft, e.g., B-52, C-5, C-9, E-3, E-8
- AN/PRC-150 Falco

 \rightarrow performance of all of these if used for BLOS comm. directly affected by the ionospheric conditions

- currently u

Credit: US Marine Corps

Example HF radio systems

- AN/VRC-104 vehicle mounted radio:
 - on some of the new generation combat vehicles
- AN/ARC-190 airborne radio:
 - found on a large variety of current aircraft, e.g., B-52, C-5, C-9, E-3, E-8
- AN/PRC-150 Falco
 - currently u

 \rightarrow performance of all of these if used for BLOS comm. directly affected by the ionospheric conditions

 \rightarrow inability to communicate

T-1694D(P)(C)

HARRIS

.....

Credit: US Marine Corps

 \rightarrow a very high SW risk as in-theater communication is essential for most operations

Integrated meteorological system (IMETS)

- Northrop Grumman developed for the US Army: a weather data communication system that receives, processes, and disseminates weather observations
- IMETS employed to inform units if weather conditions might affect operations
- one of the means in which IMETS receives data is through HF OTH (BLOS) radio signals

Integrated meteorological system (IMETS)

- Northrop Grumman developed for the US Army: a weather data communication system that receives, processes, and disseminates weather observations
- IMETS employed to inform units if weather conditions might affect operations
- one of the means in which IMETS receives data is through HF OTH (BLOS) radio signals

 \rightarrow the ability to propagate signals BLOS directly dependent on the ionospheric conditions

Integrated meteorological system (IMETS)

- Northrop Grumman developed for the US Army: a weather data communication system that receives, processes, and disseminates weather observations
- IMETS employed to inform units if weather conditions might affect operations
- one of the means in which IMETS receives data is through HF OTH (BLOS) radio signals

 \rightarrow the ability to propagate signals BLOS directly dependent on the ionospheric conditions

 \rightarrow a medium to high SW risk depending on whether alternative communication channels exist

Very-high and ultra-high frequency effects

- VHF: 30 MHz to 300 MHz, UHF: 300 MHz to 3 GHz
- Line-of-sight (LOS) communication use:
 - generally for an in-theatre communication
 - for surface-to-surface defense like land and navy, often dual band because UHF can penetrate walls (better in urban areas)
 - SW effects only from solar radio bursts: broadband radio noise increasing the static

- SATCOM communication use (usually from UHF up)
 - while travelling through the ionosphere, weakening of the signal and shifting of its phase, e.g. when there are large electron density gradients → scintillation
 - scintillation dependent on geographical location, time of the day and of the year
 - signal significantly degraded for minutes up to hours after a SW event

SINCGARS (single channel ground and airborne radio system) VHF

- several models, short and long range, mostly LOS
- concept designed to maximise interoperability among various ground/air/naval configurations
- VHF range, typically between 30 MHz to 87.975 MHz
- half-duplex, so-called "combat-net radio", CNR, for command and control of combat and combat support
- widely used in the US
- incorporates anti-jamming features, e.g. frequency hopping

SINCGARS (single channel ground and airborne radio system) VHF

- several models, short and long range, mostly LOS
- concept designed to maximise interoperability among various ground/air/naval configurations
- VHF range, typically between 30 MHz to 87.975 MHz
- half-duplex, so-called "combat-net radio", CNR, for command and control of combat and combat support
- widely used in the US
- incorporates anti-

 \rightarrow mostly unaffected by SW, but might be disrupted by solar radio bursts if at the right freq.

Credit: L3Harris

SINCGARS (single channel ground and airborne radio system) VHF

- several models, short and long range, mostly LOS
- concept designed to maximise interoperability among various ground/air/naval configurations
- VHF range, typically between 30 MHz to 87.975 MHz
- half-duplex, so-called "combat-net radio", CNR, for command and control of combat and combat support
- widely used in the US
- incorporates anti-

→ mostly unaffected by SW, but might be disrupted by solar radio bursts if at the right freq.

 \rightarrow inability to communicate

 \rightarrow a medium SW risk as the chance of radio interference is low, but SINCGARS is essential for most units during operations for communications

Credit: L3Harris

Other typical VHF to UHF radio products

- **P25 (project 25):** a suite of standards for interoperable two-way products
 - both full/ half duplex, mostly by Motorola
 - usually found in 138-174 MHz, 380-512 MHz, 769-824 MHz, and 851-869 MHz (VHF to UHF), SATCOM capable
- Tadiran PNR-500: personal
 - popular for smaller groups, e.g. platoon level
 - full duplex, 410-450 MHz (UHF)
- AN/PRC-162: mounted
 - 30-88, 225-450, 1250-1450, 1755-1850 MHz (VHF to UHF), two way (full/ half duplex), SATCOM capable, with GPS embedded

Credit: Forester

Other typical VHF to UHF radio products

- **P25 (project 25):** a suite of standards for interoperable two-way products
 - both full/ half duplex, mostly by Motorola
 - usually found in 138-174 MHz, 380-512 MHz, 769-824 MHz, and 851-869 MHz (VHF to UHF), SATCOM capable

 \rightarrow SATCOM affected by the ionosphere, SRB if at right frequency

- Tadiran PNR-500: personal
 - popular for smaller groups, e.g. platoon level, for LOS only
 - full duplex, 410-450 MHz (UHF)

 \rightarrow might be disrupted by SRB if at the right frequency

- AN/PRC-162: mounted
 - 30-88, 225-450, 1250-1450, 1755-1850 MHz (VHF to UHF), two way (full/ half duplex), SATCOM capable, with GPS embedded

 \rightarrow GPS accuracy & SATCOM affected by the ionospheric conditions, SRB if at the right

Other typical VHF to UHF radio products

- P25 (project 25): a suite of standards for interoperable two-way products
 - both full/ half duplex, mostly by Motorola
 - usually found in 138-174 MHz, 380-512 MHz, 769-824 MHz, and 851-869 MHz (VHF to UHF), SATCOM capable

 \rightarrow SATCOM affected by the ionosphere, SRB if at right frequency

- Tadiran PNR-500: personal
 - popular for smaller groups, e.g. platoon level, for LOS only
 - full duplex, 410-450 MHz (UHF)

 \rightarrow might be disrupted by SRB if at the right frequency

- AN/PRC-162: mounted
 - 30-88, 225-450, 1250-1450, 1755-1850 MHz (VHF to UHF), two w (full/ half duplex), SATCOM capable, with GPS embedded

 \rightarrow inability to communicate and navigate

 \rightarrow the SW risk can be high for the SATCOM and GPS systems depending on where these systems are

nnology

 \rightarrow GPS accuracy & SATCOM affected by the ionospheric conditions, SRB if at the right

Super-high frequency effects

- high-volume communications for inter-theater communication through satellite systems
- less affected by ionospheric effects
- mostly affected by solar radio bursts
- for example, used by the Defence Satellite Communications System (DSCS):
 - for a global communication coverage
 - six comm. channels, all in SHF, between
 7250 MHz to 8400 MHz

Super-high frequency effects

- high-volume communications for inter-theater communication through satellite systems
- less affected by ionospheric effects
- mostly affected by solar radio bursts
- for example, used by the Defence Satellite
 Communications System (DSCS):
 - for a global communication coverage
 - six comm. channels, all in SHF, between
 7250 MHz to 8400 MHz

 \rightarrow inter-theatre communication mostly only vulnerable to high frequency SRB

STCE SWIC, 6

Super-high frequency effects

- high-volume communications for inter-theater communication through satellite systems
- less affected by ionospheric effects
- mostly affected by solar radio bursts
- for example, used by the Defence Satellite Communications System (DSCS):
 - for a global communication coverage -
 - six comm. channels, all in SHF, between 7250 MHz to 8400 MHz

 \rightarrow inter-theatre communication mostly only vulnerable to high frequency SRB

 \rightarrow a medium to low SW risk due to the low chance of interference and to the nature of the communications

 \rightarrow a temporary inability to communicate inter-theater

Military radio systems: protocol vulnerabilities

- used frequency band not the only problem
- inclusion of protocols and features such as frequency hopping:
 - signal loss does not have to occur for long periods of time to impact operations
 - techniques such as frequency hopping require protocols to operate properly
 - loss of communications continuity through the inability to synchronise the Rx and Tx
 - partial loss of information might make the message impossible to decrypt

STCE SWIC, 6 December, 2023, michaela.brchnelova@kuleuver

Credit: Schmidt 2020

Military radio: conclusions

- medium to high risk systems:
 - BLOS HF systems
 - GPS systems
 - SATCOM systems
 - systems with advanced anti-jamming protocols in place

- mitigation strategies:
 - presence of multiple systems/ operations at multiple frequencies (system/ frequency diversity)
 - not relying especially solely on BLOS and VHF/ UHF SATCOM
 - constant SW monitoring

Military radar systems

Space weather impacts on radio waves

- two main types of interference:
 - transionospheric effects (sky wave, space wave) \rightarrow over-the-horizon radars
 - radio bursts (ground wave) → most types of radars

Type of military radar systems

- search and detection radars
- targeting/ fire-control radars
- navigation radars
- mapping radars
- instrumentation radars

Type of military radar systems

- search and detection radars
- targeting/ fire-control radars
- navigation radars
- mapping radars
- instrumentation radars

- early warning radars: for long range (early) target detection
 - US coverage: BMEWS (SSPARS) in UHF (420-450 MHz) range
 - Russian coverage:
 Voronezh EWS radars
 operating in VHF (red) and
 UHF (blue)

- early warning radars: for long range (early) target detection
 - US coverage: BMEWS (SSPARS) in UHF (420-450 MHz) range
 - Russian coverage:
 Voronezh EWS radars
 operating in VHF (red) and
 UHF (blue)

Credit: TreveX

\rightarrow a relatively low frequency means a higher chance of SRB

- early warning radars: for long range (early) target detection
 - US coverage: BMEWS (SSPARS) in UHF (420-450 MHz) range
 - Russian coverage:
 Voronezh EWS radars
 operating in VHF (red) and
 UHF (blue)

Clear Air Force Base, AK• Cobra Dane, Eareckson Air Station, • Shemya Island, AK Beale Air Force Base, CA • • Cheyer Air For

 \rightarrow a relatively low frequency means a higher chance of SRB

→ missing information about / fake signals of incoming missiles

ightarrow a very high risk of SW effects due to potential political and military

BarnaulMishelevka

Orsk

Yeniseysk

- early warning radars: VHF to UHF
- **ground control intercept radars**: originally one or more radars are used to guide an interceptor aircraft towards the target, today **Airborne Early Warning and Control** (AEW&C/ AWACS)
 - Boeing 737 AEW&C: Northrop Grumman Electronic Systems Multi-role Electronically Scanned Array (MESA) radar in L band (1 GHz -2 GHz)
 - Saab 2000 Erieye AEW&C airborne early warning and control aircraft: Saab Systems Erieye PS-890 side-looking reconnaissance radar in S band (3.1 GHz 3.3 GHz)
 - Northrop Grumman E-2D Hawkeye: APY-9 radar operating in UHF (300 MHz to 1 GHz)

- early warning radars: VHF to UHF
- ground control intercept radars: originally one or more radars are used towards the target, today Airborne Early Warning and Control (AEW&C)
 - Boeing 737 AEW&C: Northrop Grumman Electronic Systems Multi-role Electronically Scanned Array (MESA) radar in L band (1 GHz -2 GHz)
 - Saab 2000 Erieye AEW&C airborne early warning and control aircraft: Saab Systems Erieye PS-890 side-looking reconnaissance radar in S band (3.1 GHz 3.3 GHz)
 - Northrop Grumman E-2D Hawkeye: APY-9 radar operating in UHF (300 MHz to 1 GHz)

- early warning radars: VHF to UHF
- ground control intercept radars: originally one or more radars are used towards the target, today Airborne Early Warning and Control (AEW&C)
 - Boeing 737 AEW&C: Northrop Grumman Electronic Systems Multi-role Electronically Scanned Array (MESA) radar in L band (1 GHz -2 GHz)
 - Saab 2000 Erieye AEW&C airborne early warning and control aircraft: Saab Systems Erieye PS-890 side-looking reconnaissance radar in S band (3.1 GHz 3.3 GHz)
 - Northrop Grumman E-2D Hawkeye: APY-9 radar operating in UHF (300 MHz to 1 GHz)

 \rightarrow a chance of SRB blinding, depending on the radar mode (look up/ look

 \rightarrow missing information about / fake signals of incoming missiles

 \rightarrow a relatively high risk of SW effects due to potential political and military cost

Credit: Republic of Korea Armed Forces

down

Credit: Saab

Credit: US Navy

- early warning radars: VHF to UHF
- ground control intercept radars & AWACS: UHF to L/ S-band
- **airborne ground surveillance:** unlike AWACS, for surveillance of ground targets (not airborne)
 - E-8 Joint Surveillance Target Attack Radar System (Joint STARS): APY-7 in Ku band (12 GHz 18 GHz)
 - Boeing P-8 Poseidon: APY-10 in X band (8 GHz 12 GHz)
 - Northrop Grumman RQ-4 Global Hawk: a synthetic aperture radar in X band (8 GHz 12 GHz)

- early warning radars: VHF to UHF
- ground control intercept radars & AWACS: UHF to L/ S-band
- **airborne ground surveillance:** unlike AWACS, for surveillance of ground targets (not airborne)
 - E-8 Joint Surveillance Target Attack Radar System (Joint STARS): APY-7 in Ku band (12 GHz 18 GHz)
 - Boeing P-8 Poseidon: APY-10 in X band (8 GHz 12 GHz)
 - Northrop Grumman RQ-4 Global Hawk: a synthetic aperture radar in X band (8 GHz 12 GHz)

 \rightarrow a minimal chance of SW interference (due to the radar pointing)

Credit: US Navy

- early warning radars: VHF to UHF
- ground control intercept radars & AWACS: UHF to L/ S-band
- **airborne ground surveillance:** unlike AWACS, for surveillance of ground targets (not airborne)
 - E-8 Joint Surveillance Target Attack Radar System (Joint STARS): APY-7 in Ku band (12 GHz 18 GHz)
 - Boeing P-8 Poseidon: APY-10 in X band (8 GHz 12 GHz)
 - Northrop Grumman RQ-4 Global Hawk: a synthetic aperture radar in X band (8 GHz 12 GHz)

- early warning radars: VHF to UHF
- ground control intercept radars & AWACS: UHF to L/ S-band
- airborne ground surveillance: X band to Ku band
- over-the-horizon: 1000 to 3000 km range vision through ionospheric refraction
 - Australian Jindalee Operational Radar Network: 10.153 MHz, 22.95 MHz, 8.992 MHz (HF)
 - AN/TPS-71 ROTHR (Relocatable Over-the-Horizon Radar) of the US Navy: 5 to 28 MHz (HF)
 - Russian Kontayner OTH radar: HF

- early warning radars: VHF to UHF
- ground control intercept radars & AWACS: UHF to L/ S-band
- airborne ground surveillance: X band to Ku band
- over-the-horizon: 1000 to 3000 km range vision through ionospheric refraction
 - Australian Jindalee Operational Radar Network: 10.153 MHz, 22.95 MHz, 8.992 MHz (HF)
 - AN/TPS-71 ROTHR (Relocatable Over-the-Horizon Radar) of the US Navy: 5 to 28 MHz (HF)
 - Russian Kontayner OTH radar: HF

- early warning radars: VHF to UHF
- ground control intercept radars & AWACS: UHF to L/ S-band
- airborne ground surveillance: X band to Ku band
- over-the-horizon: 1000 to 3000 km range vision through ionospheric refraction
 - Australian Jindalee Operational Radar Network: 10.153 MHz, 22.95 MHz, 8.992 MHz (HF)
 - AN/TPS-71 ROTHR (Relocatable Over-the-Horizon Radar) of the US Navy: 5 to 28 MHz (HF)
 - Russian Kontayner OTH radar: HF

- early warning radars: VHF to UHF
- ground control intercept radars & AWACS: UHF to L/ S-band
- airborne ground surveillance: X band to Ku band
- over-the-horizon: HF
- target acquisition radars: range in excess of 100km
 - Soviet Tor Surface-to-Air missile system: target acquisition radar in F band (3 GHz 4 GHz), target engagement in G (4 GHz 6 GHz)/ H (6 GHz 8 GHz) and later K band (20 GHz 27 GHz)
 - MIM-104 Patriot: AN/MPQ-53/65 Radar in G/H-Band (4 GHz 8 GHz)
 - Pantsir-S1: X band (8 GHz to 12 GHz) for detection and Ku band (12 GHz -18 GHz) for guidance

STEL SWIE, O December, 2023, mendelaistennelovae kaleavense

- early warning radars: VHF to UHF
- ground control intercept radars & AWACS: UHF to L/ S-band
- airborne ground surveillance: X band to Ku band
- over-the-horizon: HF
- target acquisition radars: range in excess of 100km
 - Soviet Tor Surface-to-Air missile system: target acquisition radar in F band (3 GHz 4 GHz), target engagement in G (4 GHz 6 GHz)/ H (6 GHz 8 GHz) and later K band (20 GHz 27 GHz)
 - MIM-104 Patriot: AN/MPQ-53/65 Radar in G/H-Band (4 GHz 8 GHz)
 - Pantsir-S1: X band (8 GHz to 12 GHz) for detection and Ku band (12 GHz -18 GHz) for guidance

- early warning radars: VHF to UHF
- ground control intercept radars & AWACS: UHF to L/ S-band
- airborne ground surveillance: X band to Ku band
- over-the-horizon: HF
- target acquisition radars: range in excess of 100km
 - Soviet Tor Surface-to-Air missile system: target acquisition radar in F band (3 GHz 4 GHz), target engagement in G (4 GHz 6 GHz)/ H (6 GHz 8 GHz) and later K band (20 GHz 27 GHz)
 - MIM-104 Patriot: AN/MPQ-53/65 Radar in G/H-Band (4 GHz 8 GHz)
 - Pantsir-S1: X band (8 GHz to 12 GHz) for detection and Ku band (12 GHz -18 GHz) for guidance

- early warning radars: VHF to UHF
- ground control intercept radars & AWACS: UHF to L/ S-band
- airborne ground surveillance: X band to Ku band
- over-the-horizon: HF
- target acquisition radars: upper UHF to SHF
- surface search radars: > 10 km for e.g.
 - Indian Integrated Coastal Surveillance System: primarily in X band (8 GHz - 12 GHz)
 - Belgian BATS GR-05 Ground Surveillance Radar: primarily in X band (8 GHz - 12 GHz)

STCE SWIC, 6 December, 2023, michaela.brchnelova@kuleuven.be

- early warning radars: VHF to UHF
- ground control intercept radars & AWACS: UHF to L/ S-band
- airborne ground surveillance: X band to Ku band
- over-the-horizon: HF
- target acquisition radars: upper UHF to SHF
- surface search radars: > 10 km for e.g.
 - Indian Integrated Coastal Surveillance System: primarily in X band (8 GHz - 12 GHz)
 - Belgian BATS GR-05 Ground Surveillance Radar: primarily in X band (8 GHz - 12 GHz)

 \rightarrow a relatively low chance of SRB blinding due to the high frequency, but still present as a result of the wide radar coverage

Credit: DRDO

STCE SWIC, 6 December, 2023, michaela.brchnelova@kuleuven.be

Credit: BATS

- early warning radars: VHF to UHF
- ground control intercept radars & AWACS: UHF to L/ S-band
- airborne ground surveillance: X band to Ku band
- over-the-horizon: HF
- target acquisition radars: upper UHF to SHF
- surface search radars: > 10 km for e.g.
 - Indian Integrated Coastal Surveillance System: primarily in X band (8 GHz - 12 GHz)
 - Belgian BATS GR-05 Ground Surveillance Radar: primarily in X band (8 GHz - 12 GHz)

 \rightarrow a relatively low chance of SRB blinding due to the high frequency, but still present as a result of the wide radar coverage

→ missing on/ fake signals of surface objects

Credit: DRDO

 \rightarrow a low SW risk due to the low chance and typically acceptable consequences

5

Credit: BATS

Type of military radar systems

- search and detection radars
- targeting/ fire-control radars
- navigation radars
- mapping radars
- instrumentation radars

Targeting/ Fire-control radars

- to provide data, such as azimuth, elevation and range of the target to the fire-control system
- some examples:
 - Raytheon AN/SPG-62 for terminal target illumination for destroyers: X band (8 GHz 12 GHz)
 - Lockheed Martin/ Northrop Grumman AN/APG-78 Longbow or Apache: Ka band (27 GHz 40 GHz)
 - Northrop Grumman AN/SPQ-9 of the US Navy: I band (8 GHz 10 GHz)

Targeting/ Fire-control radars

- to provide data, such as azimuth, elevation and range of the target to the fire-control system
- some examples:
 - Raytheon AN/SPG-62 for terminal target illumination for destroyers: X band (8 GHz 12 GHz)
 - Lockheed Martin/ Northrop Grumman AN/APG-78 Longbow or Apache: Ka band (27 GHz 40 GHz)
 - Northrop Grumman AN/SPQ-9 of the US Navy: I band (8 GHz 10 GHz)

 \rightarrow a relatively low chance of SRB blinding due to the very high frequency, actual chance depends on radar pointing

Targeting/ Fire-control radars

- to provide data, such as azimuth, elevation and range of the target to the fire-control system
- some examples:
 - Raytheon AN/SPG-62 for terminal target illumination for destroyers: X band (8 GHz 12 GHz)
 - Lockheed Martin/ Northrop Grumman AN/APG-78 Longbow or Apache: Ka band (27 GHz 40 GHz)
 - Northrop Grumman AN/SPQ-9 of the US Navy: I band (8 GHz 10 GHz)

Type of military radar systems

- search and detection radars
- targeting/ fire-control radars
- navigation radars
- mapping radars
- instrumentation radars

- marine/ naval radars: short range for surface navigation and surveillance
 - AN/SPS-73(V)12 navigation radar of the US Navy: 2D, short range, X band (8 GHz to 12 GHz)
 - AN/SPS-49 surveillance radar of the US Navy: 2D, long range, in UHF/ L band (851–942 MHz)
 - MR-800 Voskhod surveillance radar: in NATO C/D/E/F bands (0.5 GHz to 4 GHz)

- 500 400 300 200 100 5 10 15 frequency [GHz]
- marine/ naval radars: short range for surface navigation and surveillance
 - AN/SPS-73(V)12 navigation radar of the US Navy: 2D, short range,
 - AN/SPS-49 surveillance radar of the US Navy: 2D, long range, in UI
 - MR-800 Voskhod surveillance radar: in NATO C/D/E/F bands (0.5 GHz to 4 GHz)

ightarrow a chance of SRB blinding, depends on radar viewing (low if toward the

frequency [GHz]

- marine/ naval radars: short range for surface navigation and surveillance
 - AN/SPS-73(V)12 navigation radar of the US Navy: 2D, short range,
 - AN/SPS-49 surveillance radar of the US Navy: 2D, long range, in UI
 - MR-800 Voskhod surveillance radar: in NATO C/D/E/F bands (0.5 GHz to 4 GHz)

- marine/ naval radars: for navigation and surveillance, generally between UHF and X-band
- Air Traffic Control radars: primary (reflection) and secondary (interrogation)
 - ASR-9 Airport Surveillance Radar (primary): S band (2.5 GHz 2.9 GHz)
 - SSR Secondary Surveillance Radar: L band (1030 MHz)

- marine/ naval radars: for navigation and surveillance, generally between
- Air Traffic Control radars: primary (reflection) and secondary (interrogat
 - ASR-9 Airport Surveillance Radar (primary): S band (2.5 GHz 2.9 d
 - SSR Secondary Surveillance Radar: L band (1030 MHz)

- marine/ naval radars: for navigation and surveillance, generally between
- Air Traffic Control radars: primary (reflection) and secondary (interrogat
 - ASR-9 Airport Surveillance Radar (primary): S band (2.5 GHz 2.9 G
 - SSR Secondary Surveillance Radar: L band (1030 MHz)

- marine/ naval radars: for navigation and surveillance, generally between UHF and X-band
- Air Traffic Control radars: primary and secondary in S and L bands
- precision approach radars: lateral and vertical guidance during final approach
 - PAR-2090C precision approach radar: in X band (9 GHz to 9.18 GHz)
 - GCA-2000 ground control approach radar: in X band (8 GHz to 12 GHz)
 - PAR-80 precision approach radar: in I band (8 GHz to 10 GHz)

- marine/ naval radars: for navigation and surveillance, generally between
- Air Traffic Control radars: primary and secondary in S and L bands
- precision approach radars: lateral and vertical guidance during final app
 - PAR-2090C precision approach radar: in X band (9 GHz to 9.18 GHz)
 - GCA-2000 ground control approach radar: in X band (8 GHz to 12 GHz)
 - PAR-80 precision approach radar: in I band (8 GHz to 10 GHz)

- marine/ naval radars: for navigation and surveillance, generally between
- Air Traffic Control radars: primary and secondary in S and L bands
- precision approach radars: lateral and vertical guidance during final app
 - PAR-2090C precision approach radar: in X band (9 GHz to 9.18 GHz)
 - GCA-2000 ground control approach radar: in X band (8 GHz to 12 GHz)
 - PAR-80 precision approach radar: in I band (8 GHz to 10 GHz)

Type of military radar systems

- search and detection radars
- targeting/ fire-control radars
- navigation radars
- mapping radars
- instrumentation radars

Mapping radars

- typically synthetic aperture radars, SAR, for 2D and 3D reconstruction and ISTAR
- generally mounted on a moving vehicle aircraft/ spacecraft
 - Ku band (12 GHz to 18 GHz): very high resolution SAR
 - X band (8 GHz 12 GHz): high resolution SAR
 - C band (4 GHz 8 GHz): SAR workhorse
 - L to S band (1 GHz 4 GHz): medium/ low resolution SAR
- aircraft-mounted SAR, e.g., MALE or HALE UAV:
 - MQ-9 Reaper Lynx SAR: Ku band (15.2 GHz 18.2 GHz)

- spacecraft-mounted SAR:
 - ESA's ICEYE SAR constellation: X band (8 GHz 12 GHz)

Mapping radars

- typically synthetic aperture radars, SAR, for 2D and 3D reconstruction an
- generally mounted on a moving vehicle aircraft/ spacecraft
 - Ku band (12 GHz to 18 GHz): very high resolution SAR
 - X band (8 GHz 12 GHz): high resolution SAR
 - C band (4 GHz 8 GHz): SAR workhorse
 - L to S band (1 GHz 4 GHz): medium/ low resolution SAR
- aircraft-mounted SAR, e.g., MALE or HALE UAV:
 - MQ-9 Reaper Lynx SAR: Ku band (15.2 GHz 18.2 GHz)

 \rightarrow a low chance of SRB blinding due to the high frequency and direction of pointing

- ESA's ICEYE SAR constellation: X band (8 GHz - 12 GHz)

Mapping radars

- typically synthetic aperture radars, SAR, for 2D and 3D reconstruction an
- generally mounted on a moving vehicle aircraft/ spacecraft
 - Ku band (12 GHz to 18 GHz): very high resolution SAR
 - X band (8 GHz 12 GHz): high resolution SAR
 - C band (4 GHz 8 GHz): SAR workhorse
 - L to S band (1 GHz 4 GHz): medium/ low resolution SAR
- aircraft-mounted SAR, e.g., MALE or HALE UAV:
 - MQ-9 Reaper Lynx SAR: Ku band (15.2 GHz 18.2 GHz)

 \rightarrow a low chance of SRB blinding due to the high frequency and direction of pointing

 \rightarrow a low SW risk thanks to the low chance and the relatively low cost of the consequences

Type of military radar systems

- search and detection radars
- targeting/ fire-control radars
- navigation radars
- mapping radars
- instrumentation radars

Instrumentation radars

- for experimental and test applications, e.g. on bases and test ranges, both decommissioned/ COTS/ MOTS
- examples:
 - AN/FPS-16 high accuracy radar used by NASA, USAF and US Army: in C band (5.48 GHz)
 - Weibel MFTR/ MSTS series for (military) research purposes: in X band (8 GHz 12 GHz)

Instrumentation radars

- for experimental and test applications, e.g. on bases and test ranges, bot
- examples:
 - AN/FPS-16 high accuracy radar used by NASA, USAF and US Army:
 - Weibel MFTR/ MSTS series for (military) research purposes: in X band (8 GHz 12 GHz)

Instrumentation radars

- for experimental and test applications, e.g. on bases and test ranges, bot
- examples:
 - AN/FPS-16 high accuracy radar used by NASA, USAF and US Army:
 - Weibel MFTR/ MSTS series for (military) research purposes: in X band (8 GHz 12 GHz)

Military radar conclusions

- high risk systems:
 - Early Warning systems
 - Airborne Early Warning and Control systems
 - Air Traffic Control radars
 - OTH radars

- mitigation strategies:
 - presence of multiple systems/ operations at multiple frequencies (system/ frequency diversity)
 - SW advisory while interpreting measurements
 - constant SW monitoring

Examples of vulnerabilities

Examples of vulnerabilities Land component

Tanks/ Armored fighting vehicles

- Leopard 1:
 - navigation & SSA mostly from periscopes and visual/ IR cameras
 - equipped with SAM 80/90 radio (low VHF)
 - Belgian ones with a fire control system
- Mowag Piranha III:
 - prototype has Thales VHF 50W radio
 - most versions contain HF, VHF, UHF and SATCOM capability

Tanks/ Armored fighting vehicles

- Leopard 1:
 - navigation & SSA mostly from periscopes and visual/ IR cameras
 - equipped with SAM 80/90 radio (low VHF)
 - Belgian ones with a fire control system
- Mowag Piranha III:
 - prototype has Thales VHF 50W radio
 - most versions contain HF, VHF, UHF and SATCOM capability

 \rightarrow especially HF & SATCOM vulnerable to ionospheric conditions

Tanks/ Armored fighting vehicles

- Leopard 1:
 - navigation & SSA mostly from periscopes and visual/ IR cameras
 - equipped with SAM 80/90 radio (low VHF)
 - Belgian ones with a fire control system
- Mowag Piranha III:
 - prototype has Thales VHF 50W radio
 - most versions contain HF, VHF, UHF and SATCOM capability

 \rightarrow especially HF & SATCOM vulnerable to ionospheric conditions

 \rightarrow inability to communicate mostly via HF and

SATCOM

STCE \rightarrow a low SW risk due to sufficiently diverse communication systems

Credit: Military Today

Credit: Military Review

Anti-tank missiles

- Spike SR/MR/LR
 - communication generally through fibre optics
 - targeting mostly reliant on infrared homing
 - Spike LR II also relies on a helicopter RF link
 - coordination through GPS
- Akeron MP (from 2025 onwards)
 - dual band seeker in IR and low-light video
 - at the firing post TV camera, fibre optics and GPS receiver to exchange target coordinates

Anti-tank missiles

- Spike SR/MR/LR
 - communication generally through fibre optics
 - targeting mostly reliant on infrared homing
 - Spike LR II also relies on a helicopter RF link
 - coordination through GPS
- Akeron MP (from 2025 onwards)
 - dual band seeker in IR and low-light video
 - at the firing post TV camera, fibre optics and GPS receiver to exchange target coordinates

 \rightarrow performance depends on GPS accuracy

Anti-tank missiles

- Spike SR/MR/LR
 - communication generally through fibre optics
 - targeting mostly reliant on infrared homing
 - Spike LR II also relies on a helicopter RF link
 - coordination through GPS
- Akeron MP (from 2025 onwards)
 - dual band seeker in IR and low-light video
 - at the firing post TV camera, fibre optics and GPS receiver to exchange target coordinates

 \rightarrow performance depends on GPS accuracy

 \rightarrow a misdirection/ a loss of the missile while in

flight

STCE \rightarrow a medium to low SW risk, depending on the protocol in case of a loss of the GPS

Examples of vulnerabilities Naval component

Leopold I frigate (similar to Louise-Marie)

- multiple radars onboard:
 - 3D combined watch radar, a SMART-S 3D: in F band (3 GHz 4 GHz)
 - Signaal LW-08 combined watch radar: in D band (1 GHz 2 GHz)
 - Kelvin Hughes navigation radar: in I band (8 GHz 10 GHz)
 - SCOUT LPI surveillance radar: in J band (10 GHz to 20 GHz)
 - two Signaal STIR 18 fire control systems with missile control: in I/J/K band (8 GHz 40 GHz)

Leopold I frigate (similar to Louise-Marie)

- multiple radars onboard:
 - 3D combined watch radar, a SMART-S 3D: in F band (3 GHz 4 GHz)
 - Signaal LW-08 combined watch radar: in D band (1 GHz 2 GHz)
 - Kelvin Hughes navigation radar: in I band (8 GHz 10 GHz)
 - SCOUT LPI surveillance radar: in J band (10 GHz to 20 GHz)
 - two Signaal STIR 18 fire control systems with missile control: in I/J/K band (8 GHz 40 GHz)

Leopold I frigate (similar to Louise-Marie)

- multiple radars onboard:
 - 3D combined watch radar, a SMART-S 3D: in F band (3 GHz 4 GHz)
 - Signaal LW-08 combined watch radar: in D band (1 GHz 2 GHz)
 - Kelvin Hughes navigation radar: in I band (8 GHz 10 GHz)
 - SCOUT LPI surveillance radar: in J band (10 GHz to 20 GHz)
 - two Signaal STIR 18 fire control systems with missile control: in I/J/K band (8 GHz 40 GHz)

Examples of vulnerabilities Air component

F-16 radar and navigation systems

- BAE Systems Terprom digital terrain navigation system:
 - a radar altimeter C-band in 4.2 GHz to 4.4 GHz (UHF)
- Gould AN/APN-232 radar altimeter: C-band ar 4.3 GHz (UHF)
- Rockwell Collins AN/ARN-118 tactical air navigation system
 - receivers in 1025 MHz to 1150 MHz, L Band
 - transmitters in 962 MHz to 1213 MHz, L Band

- Rockwell Collins AN/ARN-108 instrument landing system: radio signals on 108.10 MHz to 111.95 MHz (VHF) frequency for horizontal guidance, 329.15 to 335 MHz (UHF) for vertical guidance
- AN/APG-68 fire control radar in X-band (UHF) or AN/APG-80 upgraded version operating in X-band (UHF)

F-16 radar and navigation systems

- BAE Systems Terprom digital terrain navigation system:
 - a radar altimeter C-band in 4.2 GHz to 4.4 GHz (UHF)
- Gould AN/APN-232 radar altimeter: C-band ar 4.3 GHz (UHF)
- Rockwell Collins AN/ARN-118 tactical air navigation system
 - receivers in 1025 MHz to 1150 MHz, L Band
 - transmitters in 962 MHz to 1213 MHz, L Band

- Rockwell Collins AN/ARN-108 instrument landing system: radio signals on 108.10 MHz to 111.95 MHz (VHF) frequency for horizontal guidance, 329.15 to 335 MHz (UHF) for vertical guidance
 - AN/APG-68 fire control radar in X-band (UHF) or AN/APG-80 upgraded version operating in X-band (UHF)

ST

F-16 radar and navigation systems

- BAE Systems Terprom digital terrain navigation system:
 - a radar altimeter C-band in 4.2 GHz to 4.4 GHz (UHF)
- Gould AN/APN-232 radar altimeter: C-band ar 4.3 GHz (UHF)
- Rockwell Collins AN/ARN-118 tactical air navigation system
 - receivers in 1025 MHz to 1150 MHz, L Band -
 - transmitters in 962 MHz to 1213 MHz, L Band

- Rockwell Collins AN/ARN-108 instrument landing system: radio signals on 108.10 MHz to 111.95 MHz (VHF) frequency for horizontal guidance, 329.15 to 335 MHz (UHF) for vertical guidance

AN/APG-68 fire control radar in X-band (UHF) or $\lambda \rightarrow$ inability to communicate and/ or navigate

 \rightarrow a medium to low chance of SRB blinding

 \rightarrow a low SW risk due to the diversity in NAV systems₄

F-16 communication systems

- Raytheon UHF AN/ARC-164 receiver / transmitter:
 225 MHz to 399.975 MHz (VHF to UHF)
- Rockwell Collins VHF AM/FM AN/ARC-186 transceiver:
 - FM: on 30 MHz to 87.975 MHz
 - AM: on 108 MHz to 115.975 MHz (Receive only) and from 116 MHz to 151.975 MHz
- AN/APX-101 identification friend or foe (IFF) transponder:
 - interrogate: 1030 MHz (UHF)
 - replay: 1090 MHz (UHF)
- many have now integrated a SATCOM capability

F-16 communication systems

- Raytheon UHF AN/ARC-164 receiver / transmitter:
 225 MHz to 399.975 MHz (VHF to UHF)
- Rockwell Collins VHF AM/FM AN/ARC-186 transceiver:
 - FM: on 30 MHz to 87.975 MHz
 - AM: on 108 MHz to 115.975 MHz (Receive only) and from 116 MHz to 151.975 MHz
- AN/APX-101 identification friend or foe (IFF) transponder:
 - interrogate: 1030 MHz (UHF)
 - replay: 1090 MHz (UHF)
- many have now integrated a SATCOM capability

F-16 communication systems

- Raytheon UHF AN/ARC-164 receiver / transmitter:
 225 MHz to 399.975 MHz (VHF to UHF)
- Rockwell Collins VHF AM/FM AN/ARC-186 transceiver:
 - FM: on 30 MHz to 87.975 MHz
 - AM: on 108 MHz to 115.975 MHz (Receive only) and from 116 MHz to 151.975 MHz
- AN/APX-101 identification friend or foe (IFF) transponder:
 - interrogate: 1030 MHz (UHF)
 - replay: 1090 MHz (UHF)
- many have now integrated a SATCOM capability

 \rightarrow inability to communicate mostly through SATCOM

 \rightarrow a low SW risk due to the high diversity in the systems involved

 \rightarrow a present chance of SRB blinding, SATCOM dependent on ionospheric stress conditions

Puma AE UAS

- Belgian army \rightarrow Puma LE
- GPS link for navigation
- communications:
 - 8 channels
 - uplink (e.g., sending commands for navigation and flight equipment control):
 - UHF (371.75 MHz to 395.05 MHz)
 - downlink (e.g., downloading telemetry data): UHF (1717.5 MHz - 1840.0 MHz)

Credit: AeroVironment

Puma AE UAS

- Belgian army \rightarrow Puma LE
- GPS link for navigation
- communications:
 - 8 channels
 - uplink (e.g., sending commands for navigation and flight equipment control):
 - UHF (371.75 MHz to 395.05 MHz)
 - downlink (e.g., downloading telemetry data): UHF (1717.5 MHz - 1840.0 MHz)

 \rightarrow a medium chance of SRB blinding

Credit: AeroVironment

Puma AE UAS

- Belgian army \rightarrow Puma LE
- GPS link for navigation
- communications:
 - 8 channels
 - uplink (e.g., sending commands for navigation and flight equipment control):
 - UHF (371.75 MHz to 395.05 MHz)
 - downlink (e.g., downloading telemetry data): UHF (1717.5 MHz - 1840.0 MHz)

 \rightarrow a medium chance of SRB blinding

Credit: AeroVironment

→ UAS loss/ misdirection to civil space and/ or capture by adversaries

+ 3 - 4

ightarrow a medium to low SW risk, depending on the protocol in case of loss of contact

8. Recommendations

Short-term SWx preparedness

- I. Delaying/ fast-tracking operations if an event is expected
- II. Aviation operations might need adjustments to trajectories to prevent excessive radiation
- III. Switching to higher/ lower frequencies* for communications or using multiple bands at the same time for redundancy
- IV. Satellite ISR can be replaced by airborne ISR
- V. When interpreting sensor and equipment data, keep SWx in mind

*switching to lower HF radio frequencies during ionospheric depressions and high HF radio frequencies during solar flares

Long-term SWx preparedness

- I. Perform risk-assessment on critical military systems (vulnerability to SWx)
- II. Backing up all critical power systems with diesel/ solar/ wind/ other power generators
- III. Ensuring that critical communication systems have sufficient diversity in them
- IV. Systems with GNSS time-synchronization designed to also operate with holdover technology
- V. Challenging service providers to determine the level of survivability of their systems
- VI. Where GNSS data is critical, using double-frequency & EGNOS or similar

What can we do better on the research side?

- Europe must perfect the R2O2R philosophy
- developers of SWx software are frequently PhDs and PostDocs at universities → they must know what is at stake and what is needed
- at the same time, the customers must keep providing useful feedback to the developers

Figure 1: Research to Operations to Research Process (NOAA Example)

Thank you for your attention!

michaela.brchnelova@kuleuven.be

(m.brchnelova@gmail.com after summer 2024)