
Status of the reanalysis activities at ECMWF

R. Dragani, H. Hersbach, D. Shepers, A. Simmons, P. Laloyaux, G. De Chiara and many other colleagues

rossana.dragani@ecmwf.int

Reanalysis productions at ECMWF

Content

■ **ERA5** → See Adrian's talk this afternoon!

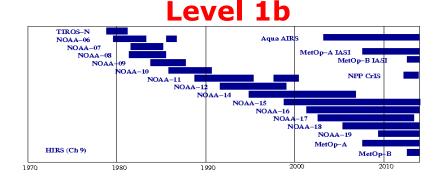
- Brief introduction
- Assessment of the ERA5 ozone
- Release plan
- Towards ERA6
 - The CERA system and CERA-SAT reanalysis

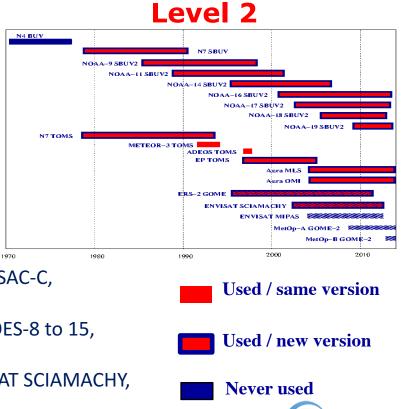
What's new in ERA5?

	ERA-Interim	ERA5
Period	1979 – present	Initially 1979 – present, later 1950 -1978
Streams	1979-1989, 1989-present	Parallel streams, one per decade
Assimilation system	2006 cycle (31r2), 4D-Var	2016 ECMWF model cycle (41r2), 4D-Var
<i>Model input</i> (radiation and surface)	As in operations, (inconsistent SST)	<i>Appropriate for climate</i> , e.g., evolution GHG, volcanic eruptions, SST and sea ice
Spatial resolution	79 km globally 60 levels to 10 Pa	<i>31 km globally</i> 137 levels to 1 Pa
Uncertainty estimate	/	Based on a 10-member 4D-Var ensemble at 62 km
Land Component	79km	ERA5L, 9km (separate, forced by ERA5)
Output frequency	6-hourly Analysis fields	<i>Hourly</i> (three-hourly for the ensemble), <i>Extended list of parameters</i> ~ 5 Peta Byte (1979-NRT)
Observations	Mostly ERA-40, GTS	Various <i>reprocessed CDRs, latest instruments</i>
Variational Bias correction	Satellite radiances	Also ozone, aircraft, surface pressure

The evolving observing system

Improved data usage

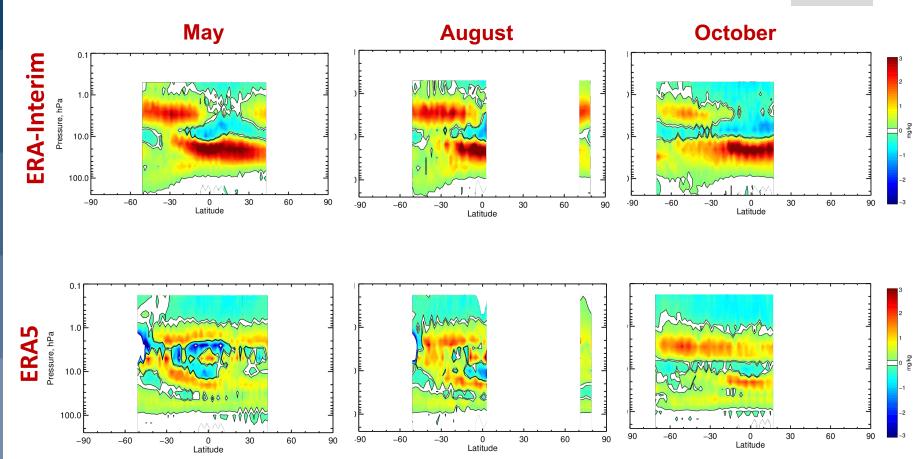

- all-sky vs clear-sky assimilation,
- latest radiative transfer model,


ERA5 is more future proof!

 Lack of infrastructure in ERA-Interim to include new observations (IASI, ASCAT, ATMS, CrIS, MWHS2, Himawari-8)

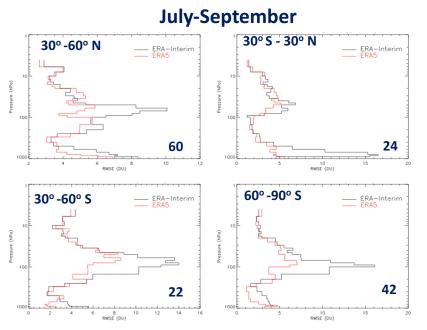
Newly reprocessed data sets

- Radiances: SSM/I brightness temp from CM-SAF
- METEOSAT from EUMETSAT
- Altimeter: ERS1/2, ENVISAT, Jason-1
- Scatterometers: ASCAT-A, ERS 1/2 soil moisture
- GPS RO: METOP GRAS, COSMIC, CHAMP, GRACE, SAC-C, TERRASAR-x
- AMV winds: METEOSAT, GMS/GOES-9/MTSAT, GOES-8 to 15, AVHRR METOP and NOAA
- Ozone: NIMBUS-7, EP TOMS, ERS-2 GOME, ENVISAT SCIAMACHY, Aura MLS, OMI

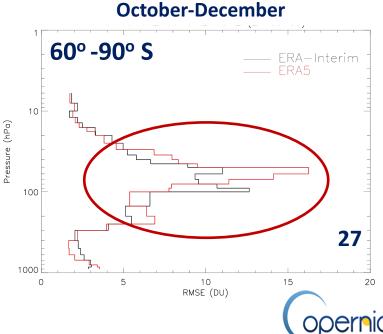


Quality of the ERA5 O₃ reanalysis: SAGE II

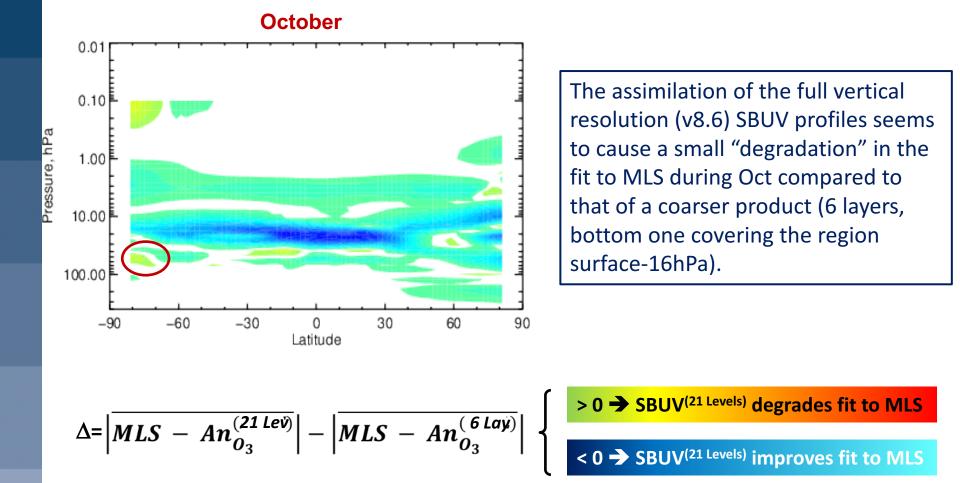
SAGE-ERA



Quality of the ERA5 O₃ reanalysis: WOUDC O₃ Sondes



Investigation of the impact of various ozone changes using the same model version (ozone model, and assimilation) might show a small degradation from v8.6 SBUV data in October.



Similar results found in JFM, and AMJ at all available latitudes, as well as between 60°S and 60°N during OND.

2009

Impact of the assimilation of SBUV: v8.6^{21 lev} vs v8.0^{6 lay}

ECMWF

ERA5 preliminary assessment

The performance of ERA5 is very promising in some aspects, e.g.:

- improved global hydrological and mass balance;
- reduced biases in precipitation;
- ✓ refinement of the variability and trends of surface air temperature;
- ✓ Ozone reanalyses are generally better than those from ERA-Interim.

There are some imperfections, though

- X Temperature bias in the stratosphere;
- Tropical jet in the mesosphere too intense;
- Initially there were quality issues over the SH in the 1980s (delay in production stream).
- Ozone in the ozone hole region slightly degraded compared to E-I due to assimilation of high vertical resolution SBUV profiles.

See Adrian's talk later today.

ERA5 release plan

- Q2 2017: public release of 2010 2016
- Q4 2017 / Q1 2018: 2017 timely updates

 ERA5: Updates with about 2-months delay (final product)

 ERA5T: Updates with short delay (<1 week, preliminary product)</p>
- Q1/2 2018: Release of 1979 2009:
 - Continue ERA5 timely updates
 - Continue ERA-Interim for another 6 months
- 2018: integration of ERA5 segment from 1950

Access:

- ✤ Initially similar to ERA-Interim (Web-API)
- From Q1 2018 via the C3S Climate Data Store

From ERA5 to ERA6

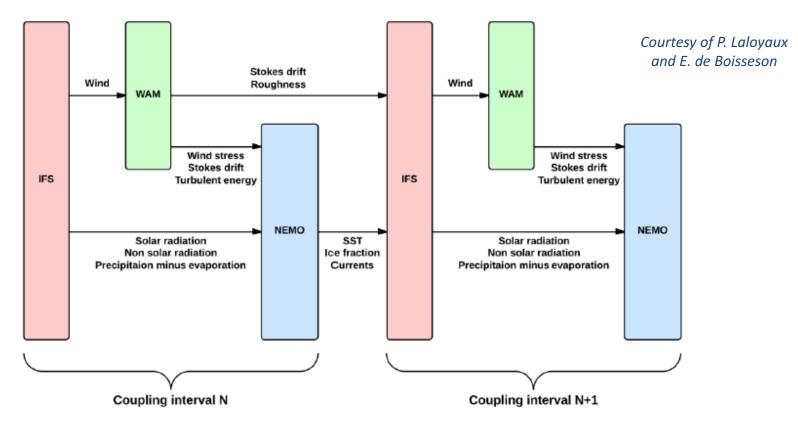
- As part of its long-term strategy, ECMWF is developing an Earth System Model (atmosphere, including composition, ocean, waves, sea ice, and land).
- Part of these developments will be exploited in the next global reanalysis, ERA6.
- Funded through the ERA-CLIM2 project, a pilot reanalysis based on coupled system has almost been completed. It couples the atmosphere, ocean, wave, SI and (weakly) land components.
- The ocean coupling is important for:
 - seasonal forecasting: it provides better SST forecasts for ENSO predictions;
 - short range forecasting: it improves the Tropical Cyclone forecasts

CERA-20C: the first ECMWF coupled reanalysis of the 20th century

Atmosphere

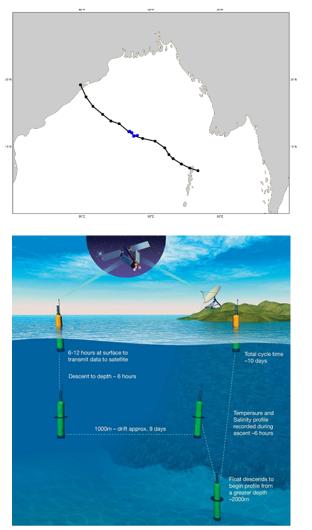
Land

Wave

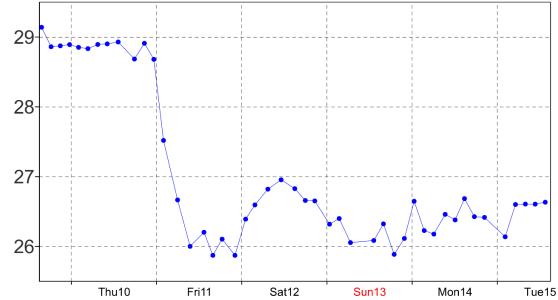

Ocean

Sea ice

Model: IFS/NEMO/LIM2 (CY41R2, Mar 2016) Forcing: SST nudged (HADISST2) Observation: surface conventional, salinity and temperature profiles Assimilation: new CERA system (10-member ensemble coupled hybrid DA) Resolution: T159L91/ORCA1 Z42 Period: 1901-2010

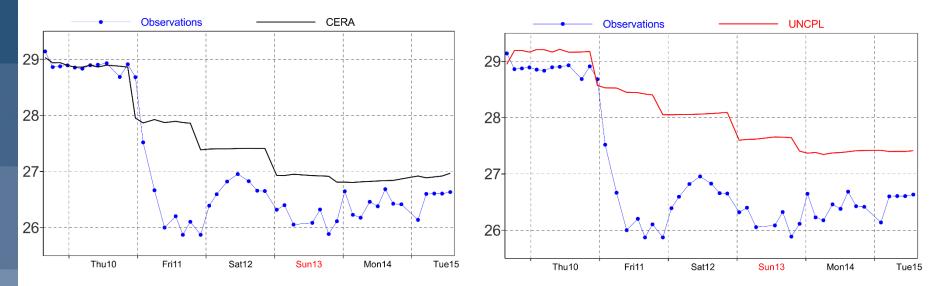

P. Laloyaux et al. A coupled data assimilation system for climate reanalysis. Quarterly Journal of the Royal Meteorological Society, 142(65-78), 2016.

Towards a Coupled ECMWF ReAnalysis (CERA) system


Atmosphere-ocean interactions need to be taken into account, not only <u>during</u> <u>the forecast</u> but also for the <u>definition of the initial conditions</u> of the forecasts.

Coupled vs. uncoupled during a Tropical Cyclone (TC) event

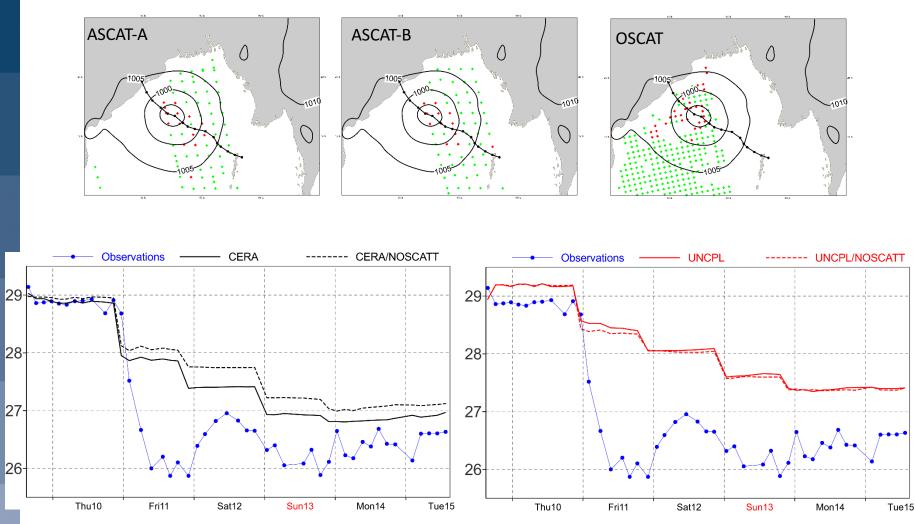
TC Phailin formed on October, 4th 2013 in the Bay of Bengal


Temperature observations from Argo probe

Coupled vs. uncoupled during TC Phailin

CERA: Coupled ECMWF Re-Analysis **UNCPL**: Uncoupled

Atmo Res ~ 128km / 137 L Ocean Res 1 deg/42 L 24h Assimilation Window


Temperature observations and analyses

Coupled analysis is closer to the observations with a stronger cold wake

P. Laloyaux, J-N Thépaut and D. Dee, Impact of scatterometer surface wind data in the ECMWF coupled assimilation system. MWR, 2016.

Crucial role of SCAT data

Wind measurements from scatterometers (ascending pass, 11 October 2013)

CERA-SAT: a proof-of-concept coupled reanalysis for the period 2008-2016

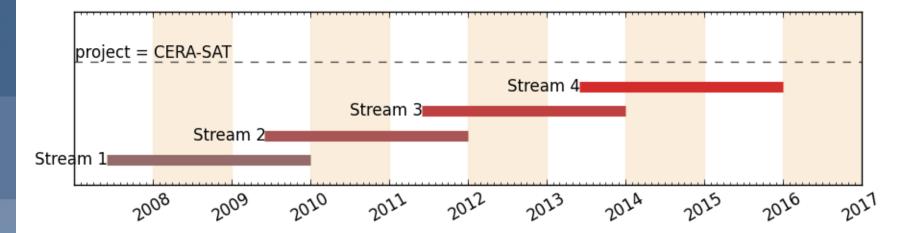
Atmosphere/Wave/Land

- Model: IFS (CY42R1_esuite, April 2016)
- Atmosphere Resolution: TL319 (~60 Km); 137 levels
- Wave Resolution: 0.5 deg
- Assimilation: 24-hour window
- Full observing system (including reprocessed datasets)

Ocean/Sea ice

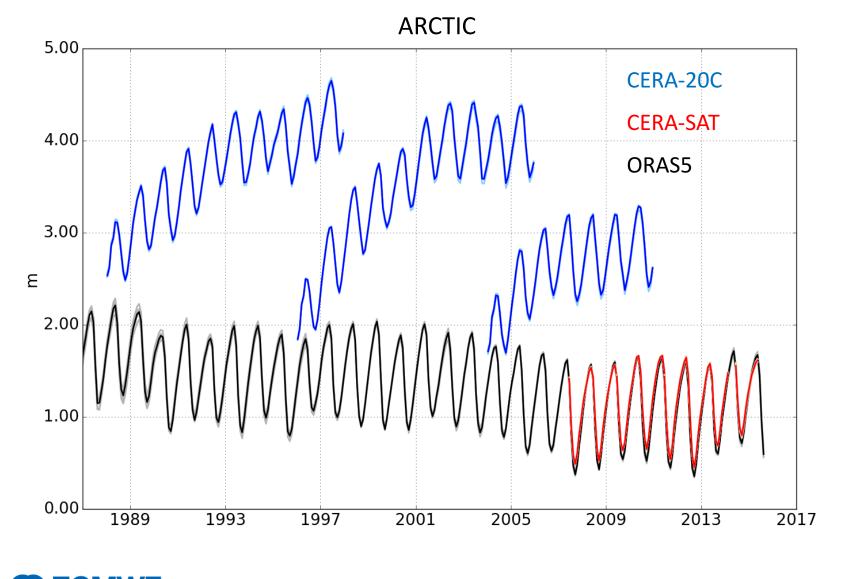
- Model: NEMO / LIM2 (CY42r1_nemo_E28)
- Resolution (1/4 degree; ORCA025) ~30 km; 75 levels
- Assimilation: 24-hour window 3Dvar FGAT
- **Observations:** salinity and temperature profiles, **SSH**, **SI analysis** (OSTIA L4)

ERA-CLIM2 deliverable



Wave

- Model: WAM (CY42R1_esuite)
- **Resolution:** 0.5 degree
- Assimilation: 24-hour window
- Observation: ERA5 observing system


CERA-SAT schedule and data availability

- Period: 2008-2016
- Production:
 - Started at the end of Dec 2016, to be completed by mid-November
 - ✤ 4 streams; 2.5+ years each (0.5+ year overlap)
- Provide CERA-SAT system in uncoupled mode for clean impact studies

 The data are available in the ECMWF MARS archive, and it is being consolidated in a single experiment ID.

Preliminary assessment of Sea-Ice thickness

Conclusions

- The production of ERA5 is well underway:
 - Higher resolution than ERA-Interim;
 - It provides hourly output, uncertainty estimates, and the feedback archive.
- Preliminary assessment of ERA5 show good performance particularly in the troposphere, but some issues in the upper stratosphere and mesosphere.
- Data release has started (backlog to be finished in Q2 2018).
- Work is on-going to move **towards a fully coupled Earth System Model**.
- Preliminary work exploiting the coupling with the ocean model show promising results, and highlight the importance of some elements of the observing system, in particular the scatterometers.
- As part of the ERA-CLIM2 project, a proof-of-concept reanalysis has been produced for the 2008-2016 period using the coupled system and the full observing system with encouraging preliminary assessment.