**METEOROLOGY** 



### **TRENDS IN UPPER TROPOSPHERIC JETS**



Gloria L. Manney (NWRA & NMT, USA) <u>Michaela I. Hegglin</u> (University of Reading, UK) Zachary D. Lawrence (NMT & NWRA, USA)

# IMPORTANCE OF UPPER TROPOSPHERIC JETS

NORTHWEST RESEARCH ASSOCIATES "unencumbered science" University of Reading

- The upper tropospheric (UT) jet streams are a key component of the atmospheric circulation, linked with weather and climate phenomena
  - storm tracks
  - precipitation
  - extreme events.
- Changes in UT jet streams are expected to lead to changes in regional weather patterns and climate impacts.
- A range of trend studies using different observations and models, and also different jet characterization methods show conflicting results
  - tropical Hadley cell width trends
  - polar versus subtropical jet trends
- We have revisited this topic using a new jet characterization method applied to five modern reanalyses (1979-2014).

### JET CHARACTERIZATION

Manney, G. L., M. I. Hegglin, et al., *ACP 2011* Manney G. L., M. I. Hegglin, et al., *J. Clim. 2014* Manney G. L. and M. I. Hegglin, *J. Clim. in press*  NORTHWEST RESEARCH ASSOCIATES "unencumbered science" University of Reading



- Focuses on 3D-character of UT jets (longitude, latitude, height).
- Identifies jet cores (windspeed maxima > 40 m s<sup>-1</sup>) and jet boundaries (30 m s<sup>-1</sup>).
- Subtropical jet (STJ) is identified by tropopause height on equatorward side of > 13 km and tropopause drop across jet of at least 2 km.
- Polar jet is strongest westerly jet poleward of STJ (or poleward of 40° if no STJ).

## **REANALYSES COMPARISON**

#### Manney, G. L., M. I. Hegglin, et al., ACP 2017.



#### Very good qualitative agreement in UT jet distributions between reanalyses.

- Largest quantitative differences in SH mid- and high-latitudes in solstice seasons, also in UT jets associated with tropical circulations.
- Quantitative differences mostly explained by differences in model resolutions.
  - ERA-I (CSFR) shows lowest (highest) resolution and low (high) bias in UT jet frequencies.

NORTHWEST RESEARCH ASSOCIATES "unencumbered science"

**Reading** 

## **GLOBAL UT JET TRENDS**

Manney, G. L. and M. I. Hegglin, J. Clim. in press

- MERRA-2 reveals complex longitudinal structure.
- Poleward shift of SH STJ frequencies across many longitudes.
- Apparent positive altitude shift in UT jets in NH.



Climatology of MERRA-2 UT jet frequencies in JJA (1980-2014).

NORTHWEST RESEARCH ASSOCIATES "unencumbered science"

•••• University of **Reading** 

Trends in MERRA-2 UT jet frequencies between last and first 10 years of climatology in JJA (lastfirst 10 years).

IAPSO-IAMAS-IAGA Joint Assembly 2017



## **TROPICAL WIDTH TRENDS**

NORTHWEST RESEARCH ASSOCIATES "unencumbered science" University of Reading

Manney, G. L. and M. I. Hegglin, J. Clim. in press



- No robust trend in tropical width across the different reanalyses on an annual basis.
- Seasonally, robust and statistically significant widening is seen in September and October only. A narrowing of the tropical width is found in December.
- Zonal averaging may, however, mask strong longitudinal signals!

IAPSO-IAMAS-IAGA Joint Assembly 2017

## LONGITUDINAL STJ TRENDS (JJA)

Manney, G. L. and M. I. Hegglin, J. Clim. in press



- Subtropical jet shows longitudinally strongly varying trends, especially in the NH.
- A clear poleward shift is found in the SH between 20E-160W.
- NH jet altitudes have increased.

ORTHWEST RESEARCH ASSOCIATES "unencumbered science"

**Reading** 

## LONGITUDINAL PJ TRENDS (DJF)

Manney, G. L. and M. I. Hegglin, J. Clim. in press

DJF

ORTHWEST RESEARCH ASSOCIATES "unencumbered science"

•••• University of **Reading** 



- Polar jet shows a clear equatorward shift in the NH DJF (and JJA, not shown).
- Not separating polar and subtropical jets properly will obscure/compensate jet trends!

# LONGITUDINALLY RESOLVED TROPICAL WIDTH TRENDS (JJA)



Manney, G. L. and M. I. Hegglin, J. Clim. in press



 Changes in subtropical jet position yield a robust widening of the tropical width over Africa and South-East Asia in JJA.

# INFLUENCE OF ENSO ON JET POSITION



Manney, G. L., Z. L. Lawrence, and M. I. Hegglin, *in preparation* 



- Periods with strong El Nino and strong La Nina show distinct differences in jet location and strength, consistent with previous literature.
- Some differences mimic those seen in the trends (e.g., poleward shift of the STJ over Africa, Asia, and the Western Pacific during La Niña)



- The NH STJ shifts equatorward & upward (poleward & downward) during EN (LN) in most seasons.
- The SH jets shift in the same direction, but changes are often weaker and less significant.

IAPSO-IAMAS-IAGA Joint Assembly 2017

# LONGITUDINAL STJ / MEI CORRELATION

NORTHWEST RESEARCH ASSOCIATES "unencumbered science" University of Reading

Manney, G. L., Z. L. Lawrence, and M. I. Hegglin, in preparation



- Correlations are not uniform in longitude! A positive correlation is seen e.g. over the Eastern Pacific, the Atlantic, and South Africa.
- The signs of significant correlations nearly always agree for all reanalyses.

## SUMMARY AND CONCLUSIONS

- We have presented a new analyses of long-term change in upper tropospheric (UT) jet latitude and altitude using five modern reanalyses.
  - Regional and seasonal variations have been analyzed using daily jet locations at each longitude.
  - Generally good agreement between different reanalyses (with some outliers in the SH).
- Jet shifts show strong regional and seasonal variations, resulting in changes that are not robust in zonal or annual means.
  - Robust changes in the subtropical jets indicate tropical widening over Africa (except during NH spring), and also tropical narrowing over the eastern Pacific in NH winter (not shown).
- The polar (or "eddy-driven") jets have shifted equatorward in the NH.
- A new study finds significant correlations of jet latitude, altitude, and windspeed with ENSO variations (*Manney Lawrence, Hegglin, in prep.*)

NORTHWEST RESEARCH ASSOCIATES "unencumbered science"

**\*\*\*** University of

Reading