# The strength of the diabatic circulation of the stratosphere

#### Ed Gerber October 25, 2017 S-RIP and SPARC-DA workshop

with Marianna Linz\*, Alan Plumb, Marta Abalos, Florian Haenel, Gabriele Stiller, Douglas Kinnison, Alison Ming, and Jessica Neu

\*mlinz@g.ucla.edu

## The idealized tracer "age" of air is used as a proxy for the overturning circulation



#### Mean age roughly reflects the pattern of circulation

Age of Air, seasonal means DJF years 50 WINTER "SURF ZONE' oleward/downward diabatic flow + TROPICS strong stirring diabatic upwelling + weak stirring Ο POLAR VORTEX <uu> 40 10 diabatic subsidence + weak stirring SUMMER EXTRATROPICS Altitude/km weak diabatic circulation + weak stirring <uu> <uu> 30 θ 5 20 0 0 1 C 70 80 90 -90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 Latitude/deg WINTER SUMMER EQUATOR POLE POLE

**BDC Schematic** 

### Age and the overturning circulation are only qualitatively similar



Modified from Garny et al. 2014

Insight from the "Leaky Pipe" of Neu and Plumb 1999: Diabatic circulation is related to the *latitudinal gradient* in age.

Isentropic mixing between upward and downward branches of circulation increases *vertical gradient*, but leaves gross *horizontal gradient* unchanged! Insight from the "Leaky Pipe" of Neu and Plumb 1999: Diabatic circulation is related to the *latitudinal gradient* in age.

Isentropic mixing between upward and downward branches of circulation increases *vertical gradient*, but leaves gross *horizontal gradient* unchanged!

Key idea today:

- (1) Extend "leaky pipe" to 3-D diabatic circulation
- (2) Use satellite-based age measurements to quantify the circulation

#### Consider the steady-state case

Statistical equilibrium:

$$\frac{\partial \Gamma}{\partial t} + \frac{1}{\rho} \nabla \cdot F^{\Gamma} = 1$$

Integrate over the volume above an isentropic surface\*:

$$F^{\Gamma}(\theta) = \int_{\theta} \sigma \dot{\theta} \Gamma dA = -M(\theta)$$
Age flux Isentropic density (1)

\*neglecting diabatic diffusion

#### Divide the surface into upwelling and downwelling regions



The mass flux,  $\mathcal{M}(\theta)$  through each of these two regions must be equal.

#### Divide the surface into upwelling and downwelling regions



The mass flux,  $\mathcal{M}( heta)$ through each of these two regions must be equal.

$$dA = -\int_{down} \sigma \dot{\theta} dA = \mathcal{M}(\theta)$$
so flux Downwelling mass flux

#### Divide the surface into upwelling and downwelling regions



Combine equations (1) and (2)

$$F^{\Gamma}(\theta) = \int_{\theta} \sigma \dot{\theta} \Gamma dA = -M(\theta)$$
 (1)

$$\int_{up} \sigma \dot{\theta} dA = -\int_{down} \sigma \dot{\theta} dA = \mathcal{M}(\theta) \quad (2)$$

$$\int_{\theta} \sigma \dot{\theta} \Gamma dA = \mathcal{M}(\Gamma_u - \Gamma_d) = -\mathcal{M}(\theta).$$

$$\int_{upwelling age} Downwelling age$$

$$\Delta \Gamma(\theta) = \Gamma_d(\theta) - \Gamma_u(\theta) = \frac{\mathcal{M}(\theta)}{\mathcal{M}(\theta)}.$$

Linz et al. JAS 2016

The age difference is inversely proportional to the circulation strength

$$\Delta \Gamma(\theta) = \Gamma_d(\theta) - \Gamma_u(\theta) = \frac{M(\theta)}{\mathcal{M}(\theta)}.$$

(Age down – Age up) = total mass above  $\Theta$  / Total overturning flux through  $\Theta$ 

The age difference is inversely proportional to the circulation strength

$$\Delta \Gamma(\theta) = \Gamma_d(\theta) - \Gamma_u(\theta) = \frac{M(\theta)}{\mathcal{M}(\theta)}.$$

Age difference on a surface depends only on the strength of the mean circulation through that surface.

#### Ages from satellite SF<sub>6</sub> measurements from MIPAS





#### N<sub>2</sub>O shows a compact relationship with age of air



Andrews et al. 2001

Linz et al. Nat. Geo. 2017



Linz et al. Nat. Geo. 2017

Age difference shows that the theory holds in a realistic model

![](_page_16_Figure_1.jpeg)

Linz et al. Nat. Geo. 2017

The two data calculations agree closely where they both exist

![](_page_17_Figure_1.jpeg)

The two data calculations agree closely where they both exist

![](_page_18_Figure_1.jpeg)

The two data calculations agree closely where they both exist, while reanalysis products vary

![](_page_19_Figure_1.jpeg)

Because of potential high bias in the method, ERA-Interim is in the range calculated from the data

![](_page_20_Figure_1.jpeg)

Trends in the diabatic circulation are less significant than trends in other measures

![](_page_21_Figure_1.jpeg)

Correlations of the interannual variability show that the diabatic circulation is more closely related to one metric

![](_page_22_Figure_1.jpeg)

### Summary

Latitudinal age difference on isentropes is directly related to the diabatic circulation strength.

![](_page_23_Figure_2.jpeg)

### Summary

Latitudinal age difference on isentropes is directly related to the diabatic circulation strength.

Strength of the circulation has been characterized from data. ERA-Interim plausible; JRA 55 and MERRA are outside confidence interval!

![](_page_24_Figure_3.jpeg)

### Summary

Latitudinal age difference on isentropes is directly related to the diabatic circulation strength.

Strength of the circulation has been characterized from data. ERA-Interim plausible; JRA 55 and MERRA are outside confidence interval!

The diabatic circulation behaves differently than the traditional residual vertical velocity, including in vertical structure and in trends

![](_page_25_Figure_4.jpeg)