

Stellar ages with LAMOST and Gaia

Alexey Mints

Max-Planck institute for Solar System Research (MPS), Goettingen, Germany

July 31, 2017

Why care about ages

▶ Important for galactic studies:

- age-metallicity relation;
- thin-/thick-disk and halo ages;
- initial mass function of field stars;

Why care about ages

- ▶ Important for galactic studies:
 - age-metallicity relation;
 - thin-/thick-disk and halo ages;
 - initial mass function of field stars;
- ▶ Important for stellar activity studies;

Why care about ages

- ▶ Important for galactic studies:
 - age-metallicity relation;
 - thin-/thick-disk and halo ages;
 - initial mass function of field stars;
- Important for stellar activity studies;
- ► Many more...

Coverage

UniDAM

A Unified tool to estimate Distances, Ages and Masses from spectrophotometric data (Mints and Hekker (2017).

$$L = \sum_{X \in (T_{\text{eff}}, \log g, [Fe/H])} \frac{(X_{obs} - X_{PARSEC})^2}{2\sigma_X^2} + \sum_{\lambda} \frac{(m_{\lambda} - M_{\lambda} - C_{\lambda}A_K - \mu_d)^2}{2\sigma_{m_{\lambda}}^2} - V_{corr}$$

UniDAM

- Work with PARSEC isochrones (working on addition of Dartmouth, Yale and MIST isochrones).
- ▶ Use 2MASS / AllWISE photometry.
- ▶ Split PDFs by evolutionary stage.
- ▶ Produce fits that can help to reconstruct full PDF.
- ► Process all large public surveys with the same tool ⇒ 2.5 million stars + new LAMOST data.

Probability density function

Table: TGAS overlap for different surveys. * - RAVE-on and LAMOST-Cannon were processed but not included into total, as they contain same stars as the main RAVE/LAMOST surveys.

Survey	TGAS overlap
APOGEE DR13	5,591
Gaia-ESO	67
GALAH DR1	$7,\!919$
GCS	$12,\!011$
LAMOST DR3	$150,\!651$
LAMOST-Cannon*	$27,\!892$
RAVE DR5	$211,\!172$
RAVE-on*	$195,\!480$
Total	387,411

UniDAM update

$$\begin{split} L = \sum_{X \in (T_{\text{eff}}, \log g, [\text{Fe}/\text{H}])} \frac{(X_{obs} - X_{PARSEC})^2}{2\sigma_X^2} + \\ \sum_{\lambda} \frac{(m_{\lambda} - M_{\lambda} - C_{\lambda}A_K - \mu_d)^2}{2\sigma_{m_{\lambda}}^2} - V_{corr} + \\ \frac{(A_K - A_0)^2}{2\sigma_{A_0}^2} + \frac{(\pi - \pi_0)^2}{2\sigma_{\pi_0}^2} \end{split}$$

 π_0 from Gaia, A_0 from Schlegel extinction map.

Data

- 1. Complete survey;
- 2. TGAS overlap;
- 3. TGAS overlap, using TGAS parallaxes and TGAS uncertainties;
- 4. TGAS overlap, using TGAS parallaxes and Gaia EoM uncertainties;
- 5. Complete survey, using UniDAM parallaxes and Gaia EoM uncertainties;

Results for LAMOST DR3

Results for LAMOST DR3

Results

- ▶ Nearly 400,000 stars from TGAS with improved distances, ages and masses.
- ▶ Updated UniDAM version that is ready to work with Gaia DR2 parallaxes.
- ▶ We can expect log(age) uncertainty as small as 0.06 dex with Gaia EoM data.

Catalogue and tool will be openly available upon submission of the paper.

