

2nd LAMOST-Kepler Workshop

Exploring the early evolution of the Milky Way with LAMOST

Haining LI (李海宁)

National Astronomical Observatories, Chinese Academy of Sciences

Collabotors: Gang ZHAO (NAOC), Wako AOKI (NAOJ), Jianrong SHI (NAOC), Takuma SUDA (U-Tokyo), Tadafumi MATSUNO (NAOJ), Satoshi HONDA (NHAO), Y. Bharat KUMAR (NAOC)

Metal-poor stars

Metal-poor stars:

investigate the nucleosynthesis and chemical evolution

- ◆ The chemical compositions of metal-poor stars are fossil records of the nucleosynthesis of single (or a few) process.
- Comparison with chemical evolution models based on statistics of metal-poor stars.
- ♦ Controversy in formation and evolution of First stars: can we find low-mass ($< 1M_{\odot}$) first star in the halo or bulge?

yields of a supernova of a very massive (>100M_®) star

Metal-poor stars: searching status

- Survey projects
 - HK survey (1978), Hamburg/ESO Survey (1990)
 - □ RAVE (2003), SDSS/SEGUE (2004)
 - □ SkyMapper (2014), Pristine CaHK Survey (2015)
 - APOGEE (2011), 4MOST (2018)
- High-resolution follow-up
 - □ 6-10m telescopes (Magellan, Subaru, Keck, etc.)
- Number of the confirmed still limited
 - \blacksquare [Fe/H] < -3.0 (extremely metal-poor) : ~ 300
 - \square [Fe/H] < -4.0 (ultra metal-poor): 21(+3)
 - \blacksquare [Fe/H] < -5.0 (hyper metal-poor): 4 (+1)

Metal-poor stars: LAMOST-Subaru collaboration

- High-resolution spectra are demanded to really understand the nature and origin of metal-poor stars
- ◆ LAMOST+Subaru joint searching project since 2014
- Joint proposal for Subaru open-use program
 - □ Normal + Service + Intensive (2016.04-2018.01)
- ◆ CAS-JSPS joint project (2016.04-2019.12)
- Follow-up with Subaru/HDS runs (on-going)
 - Over 300 VMP/EMP stars
 - A dozen Li-rich very metal-poor stars
- A number of refereed papers published

Large sample of very metal-poor

 More than 500 very metalpoor candidates have been selected from LAMOST

low-resolution spectra

high-resolution spectroscopy

- ◆ Follow-up for ~300 stars with six Subaru/HDS runs
 - Searching efficiency > 90% for VMP stars

Large sample of very metal-poor stars: Abundance pattern

- ◆ Abundance pattern of about 250 VMP stars
 - Largest uniform VMP sample to date
 - consistent with previous sample (with smaller scatter)

Large sample of very metal-poor stars: New ultra metal-poor stars

- ◆ All are CEMP-no stars with low [Sr/Fe] and [Ba/Fe]: no significant contribution from sprocess
- Follow the general trend:

 a dominant "normal
 population" at low
 metallicities.

Large sample of very metal-poor stars: New r-rich metal-poor stars (r-II stars)

Bright object ($g \sim 12$)

$$[Fe/H]$$
=-3.4, $[Eu/Fe]$ =+1.2, $[C/Fe]$ = -0.57

New r-II star with the lowest Fe and C

Li et al. (2015b)

UV spectrum obtained and analysis ongoing

Large sample of very metal-poor stars: Revisiting metal-poor post-AGB CC Lyr

Rediscovery and detailed abundance analysis of CC Lyr

- Clear correlation between abundance ratios and the condensation temperature indicates that dust depletion is the cause of its abundance anomaly
- Contribute to the understanding of the late phase of low-mass star evolution

Li in very metal-poor stars: Spite plateau of warm metal-poor stars

 ◆ Li abundances in metal-poor stars before evolving to red giants are nearly constant → Spite plateau

Li in very metal-poor stars: Lithium in ultra metal-poor turnoff star

- A(Li) = 1.80: lower than the Li plateau $(A(Li) \sim 2.2)$
- Unique evidence for the "meltdown" of Li plateau at extremely metal-poor region

Li in very meta-poor stars: Evolution of Li in low-mass stars

Li in very meta-poor stars: Li-enhanced low-mass stars

Rare cases, but significant excess

Li-rich stars found by RAVE:

- highly evolved red giants
- □ Frequency is about 1%

red giants in globular clusters

Li-rich very metal-poor stars: Formation scenarios proposed but not established

Extra mixing for "Cameron-Fowler mechanism"

- at RGB bump / Clump/ Horizontal branch
 - ... but Li-rich stars distribute widely in HR diagram

Engulfment of a companion (planet etc.)?

- supply of Li by the companion
 - ... amount sufficient?
- increasing rotation rate
 - ... but no signature of high rotation in Li-rich stars

Mass transfer across a binary system?

- accretion of Li-rich material from an AGB/RGB companion
 - ... possibly, but how is binary frequency?

Summary and prospect

- Large sample of very metal-poor stars observed with LAMOST survey and Subaru follow-up
 - ultra metal-poor stars, r-rich stars
 - twelve new Li-rich very metal-poor stars including 5 warm subgiants before evolving to red giants
- Homogeneous abundance data for 500 very metal-poor stars will be obtained by early 2018
 - chemo-dynamical studies combined with Gaia DR2
- Very metal-poor stars in the Kepler field would be very interesting to explore the nature of these objects

lhn@nao.cas.cn

THANKS