(The 2nd LAMOST-Kepler workshop)

LAMOST as a ground-based support facility for the space missions

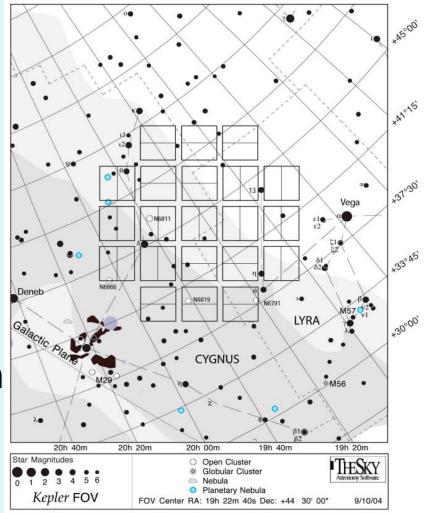
Dr. Prof. Jianning Fu

(Beijing Normal University, China)

Collaborators: Peter De Cat (Belgium), Martin C. Smith (China),

and the LAMOST-Kepler collaboration group

Brussels — August 1, 2017


Outline

- Introduction
- LAMOST-Kepler Project
 - Observation progress
 - Existing scientific work
- LAMOST-K2 project
- Prospect of LAMOST for TESS
- Synergies between LAMOST and GAIA
- Summary

§1 Introduction

1.1 Support observations for the Kepler mission

- Main scientific goals of the *Kepler* mission:
 - discover Earth-size planets
 by the transit method
 - characterize stars by asteroseismology
- Targets: ~160,000 stars in a 105 deg²

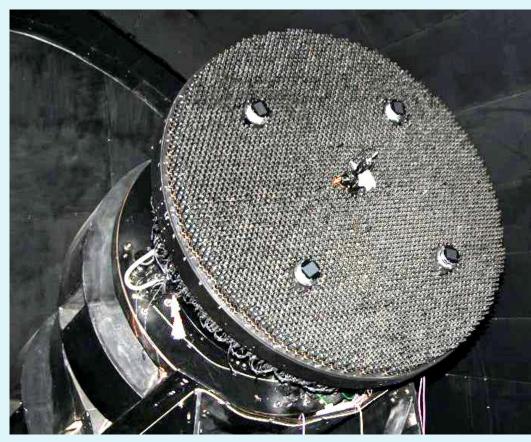
Asteroseismology with the Kepler data

- Kepler observations
 - Provide excellent light curves of a large number of stars of different populations
 - Asteroseismic study:
 - ages and evolutionary states for red giants, solar-
 - like stars, etc.
 - Stellar parameters are needed:

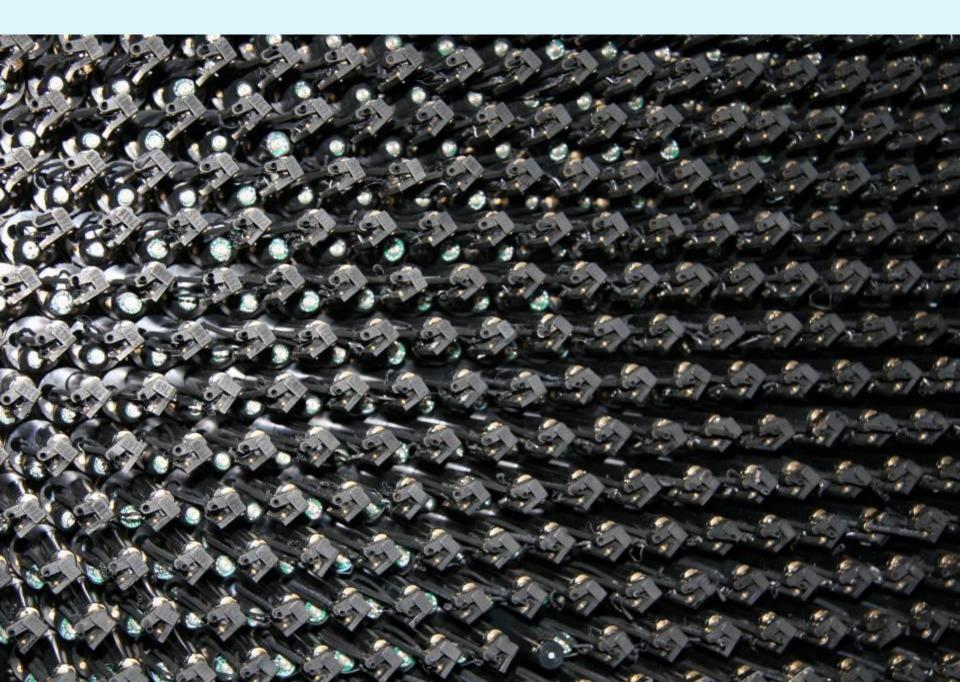
T_{eff}, log g, [Fe/H], (vsin i)

Exoplanet study with the Kepler data

- Kepler observations
 - Provide excellent light curves of a large number of stars with the transits of the planets
 - Exoplanet study:
 - eccentricity distribution, exoplanet properties,
 - exoplanet formation, etc.
 - Stellar parameters are needed:
 - T_{eff}, *log* g, [*Fe/H*]

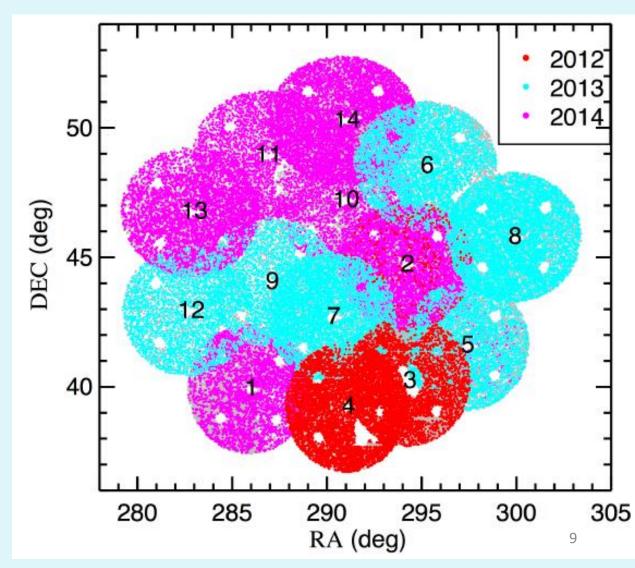

• Existing stellar parameters: *KIC*10

- Measurements based on multi-color photometry
- $-T_{\rm eff}$ and *log* g but the precision is low
- No [Fe/H] and vsin i
- Spectroscopic observations expected
 - Spectroscopy preferred above multi-colour photometry
 - Chemical composition, metallicity and rotation
 - RV for binaries and cluster members
 - Homogeneous measurements desired


\Rightarrow LAMOST!

1.2 LAMOST

Aperture: > 4 m FOV: φ 5° Fibers: 4000

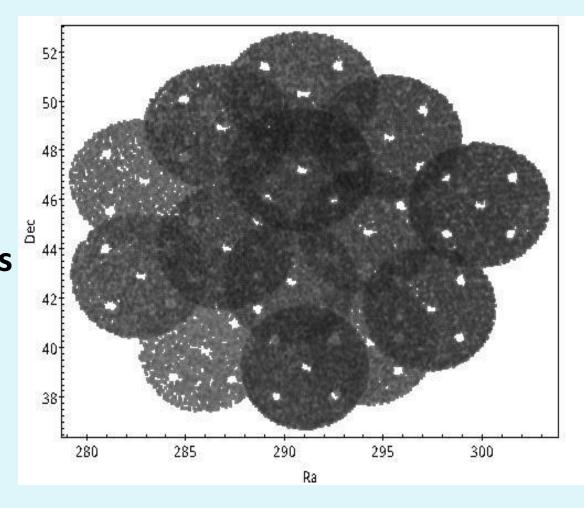


§2 LAMOST-Kepler Project

2.1 First Round Observations

–Time: June 4, 2012 — Sept. 29, 2014 –S/N_i>20: 68,685

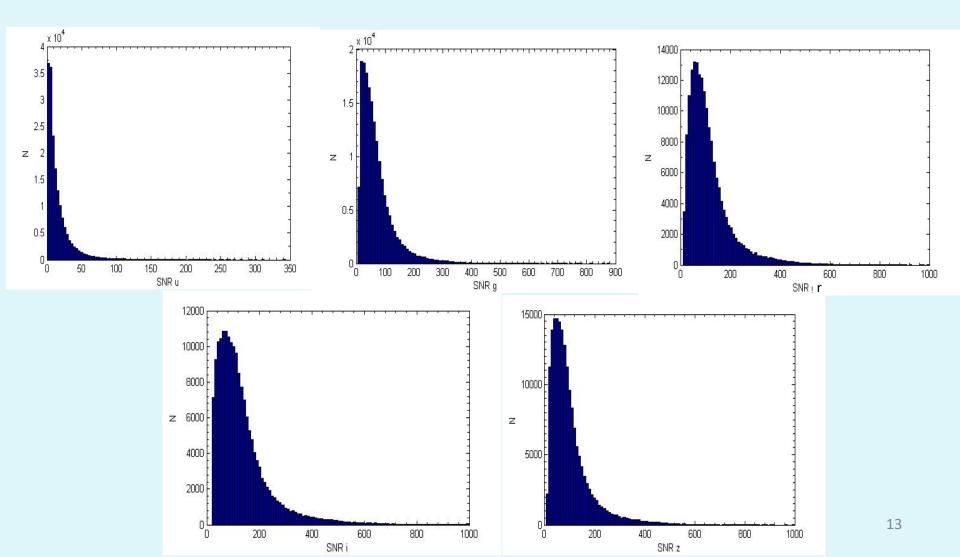
Stellar Parameters


Parameters measured with: LASP/ULySS, ROTFIT, MKCLASS

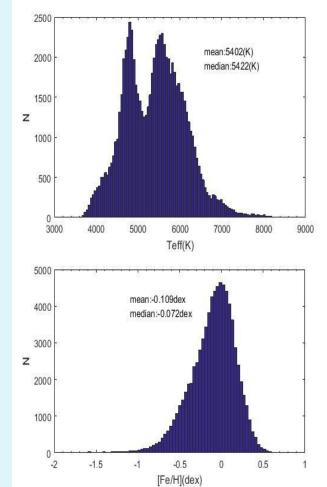
Filename/Object	Version	SNR_{τ}	SpT	T_{eff}	$\log g$	[Fe/H]	Method
				(K)	(dex)	(dex)	
spec-56094-kepler05B56094_2_sp13-034	v2.7.5	581	A2 V	9380(56)	3.65(11)	-0.35(5)	ULYSS
KIC 373195	v2.4.3		B9IV	9707(589)	3.83(11)	-0.16(14)	ROTFIT
*	v2.7.5		A0IV-V				MKCLASS
spec-56096-kepler08B56096_1_sp07-250	v2.7.5	66	$A \ge V$	11223(113)	3.79(18)	-0.18(8)	ULYSS
KIC 313703	v2.4.3		B9III	10839(342)	4.00(11)	-0.08(13)	ROTFIT
	v2.7.5		B9V				MKCLASS
spec-56096-kepler08B56096_2_sp05-225	v2.7.5	23	A1V	10869(241)	3.87(25)	-0.41(15)	ULYSS
KIC 365421	v2.4.3		B9 IV	10336(248)	3.88(10)	-0.26(13)	ROTFIT
	v2.7.5		A1 IV				MKCLASS
spec-56094-kepler05B56094_2_sp09-061	v2.7.5	279	G0	5619(12)	3.63(4)	-0.15(3)	ULYSS
KIC 518823	v2.4.3		G0V	5774(97)	4.13(13)	-0.11(17)	ROTFIT
*	v2.7.5		G0 IV-V				MKCLASS
spec-56094-kepler05F56094_sp15-020	v2.7.5	50	G0	5741(41)	4.30(12)	-0.33(10)	ULYSS
KIC 509591	v2.4.3		G0V	5731(91)	4.22(14)	-0.41(16)	ROTFIT
	v2.7.5		G1 V				MKCLASS
spec-56096-kepler08B56096_1_sp05-091	v2.7.5	17	F9	5765(76)	3.88(26)	-0.18(16)	ULYSS
KIC 365591	v2.4.3		G0V	5647(216)	4.05(25)	-0.43(20)	ROTFIT
	v2.7.5		G2 III-IV				MKCLASS

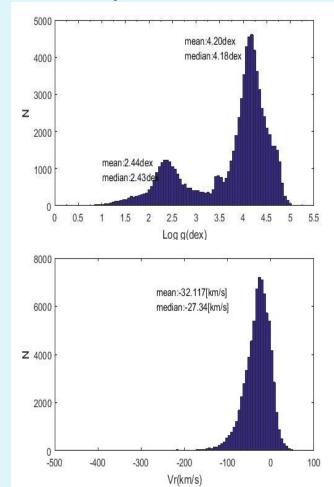
For the details, please see the presentations of Anbing, Antonio and Richard & Chris

2.2 Second Round Observations

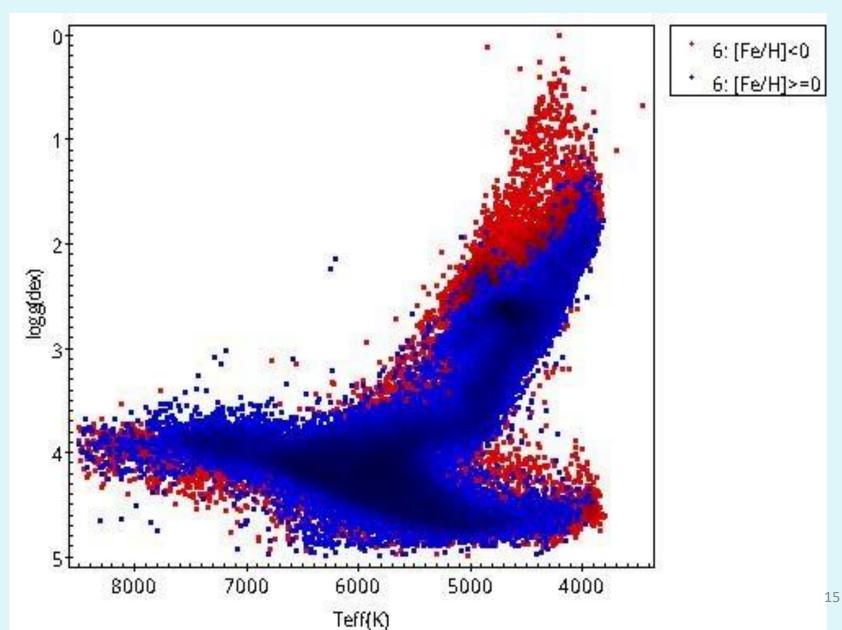

-Time: May 29, 2015 — June 15, 2017 -Observations: 48 plates/24 nights -Common stars with *Kepler*: 45,334

LAMOST-	Ra⊷	Dec₽	spectrum₽	parameters₽	Overlap	*≁⊃	date⊷
Kepler field₽					targets₽		
LK-014 ²	18:50:31+3	42:54:43*	10500+3	7398⊷	2526⊷	40	2015/10/04+
							2017/06/07+
LK-024 ³	18:51:11*	46:44:17*	2947₽	2588↩	1225₽	10	2015/10/06+
LK-0343	19:03:3943	39:54:39+3	5105₽	3327+2	2104+3	2₊⊃	2017/06/03+
LK-04+ ³	19:06:51*	48:55:31*	10944*	7747₽	3290₽	4₽	2015/05/30+
							2015/09/15+
LK-05₽	19:08:08+3	44:02:10+2	13997↩	10278	13200	5₽	2015/09/25+
							2017/06/15+
LK-064 ³	19:21:02+3	42:42:13+3	6228₽	5478₽	2677₽	2₽	2015/10/11+
LK-07₽	19:23:14+3	47:11:44*	16588₽	11983*	5030₽	6₄⊐	2015/09/14+
							2015/10/02+
							2017/06/14+
LK-08₽	19:23:23+3	50:16:16*	8689₽	6860↩	3083₽	3⇔	2015/05/29+
							2015/09/13+
LK-0942	19:24:09+3	39:12:42+3	14097↩	103700	4104+3	5₽	2015/10/12+
							2017/06/13+
LK-104 ³	19:36:37+	44:41:41*	9164₽	6714⊷	41700	3∿	2015/09/21+
LK-114 ³	19:37:08+2	40:12:49+2	9537₽	4463↩	2113₽	3∿	2015/10/18+
							2017/06/12+
LK-124 ³	19:40:45+3	48:30:45+2	9451₽	8216~	5530₽	3⇔	2015/09/16+
							2015/10/01+
LK-1342	19:49:18*	41:34:56*	9456₽	7930⊷	3832₽	3¢⊃	2015/10/08+
LK-14+ ²	19:59:20+2	45:46:21*	12726↩	9886₽	4332*	4₽	2015/09/18+
							2015/10/03+


S/N distribution


S/N_i>20: 113,227

Stellar parameter distribution


- Stellar parameters: 103,238
 Giants: 29,806; Dwarfs: 73,432
- [*Fe/H*]<-1 dex: 500; <-2 dex: 42; |*V*_r|>300 km/s: 105

14

log g vs T_{eff}

2.3 Existing scientific work

-De Cat, P.; Fu, J.N.; Ren, A.B.; et al. 2015, ApJS, 220, 19 "LAMOST observations in the Kepler field. Database of low-

resolution spectra"

- -Ren, A.B.; Fu, J.N.; De Cat, P.; et al. 2016, *ApJS*, 225, 28
 - "LAMOST Observations in the *KEPLER* Field. Analysis of the Stellar Parameters Measured with the LASP Based on the Low-Resolution Spectra"
- -Gray, R.O.; Corbally,C.J.; De Cat,P.; et al. 2016, AJ, 151, 13 "LAMOST Observations in the KEPLER Field: Spectral Classification with the MKCLASS Code"
- —Frasca, A.; Molenda-Żakowicz, J.; De Cat, P.; et al. 2016, A&A, 594, 39

"Activity Indicators and Stellar Parameters of the KEPLER Targets. An Application of the ROTFIT Pipeline to LAMOST-KEPLER Stellar Spectra"

-Dong, S.B.; et al. 2014, *ApJL*, 789, L3

"On the Metallicities of Kepler Stars"

—Deheuvels, S.; et al. 2014, A&A, 564, A27

"Seismic Constraints on the Radial Dependence of the Internal Rotation Profiles of Six *Kepler* Subgiants and Young Red Giants"

-Liu, C.; et al. 2015, ApJ, 807, 4

"Asteroseismic based estimation of the surface gravity for the LAMOST giant stars"

-Bostancı, Z.F.; et al. 2015, MNRAS, 453, 1095

"A comprehensive study of the open cluster NGC 6866"

-Ren, J.J.; et al. 2016, RAA, 16, 45

"On the LSP3 estimates of surface gravity for LAMOST-Kepler stars with asteroseismic measurements"

-Yu, J.; et al. 2016, MNRAS, 463, 1297

"Asteroseismology of 1523 misclassified red giants using Kepler data"

-Wang, L.; et al. 2016, AJ, 152, 6

"Calibration of LAMOST Stellar Surface Gravities Using the KEPLER Asteroseismic Data"

-Zhang, X.B.; et al. 2016, ApJL, 821, 32

"Multi-period g-mode Pulsations of a Pre-He-WD Star in the Eclipsing Binary KIC 9164561"

—Karoff, C.; et al. 2016, Nature Communications, 7, 11058 "Observational Evidence for Enhanced Magnetic Activity of Superflare Stars"

—Xie, J.W.; et al. 2016, PNAS, 113, 11431

"Exoplanet Orbital Eccentricities Derived From LAMOST-Kepler Analysis"

-Chang, H.-Y.; et al. 2017, *ApJ*, 834, 92

"LAMOST Observations of Flaring M Dwarfs in the Kepler Field"

-Wu, Y.Q.; et al. 2017, RAA, 17, 5

"Stellar parameters of main sequence turn-off star candidates observed with LAMOST and Kepler"

Presentations at conferences

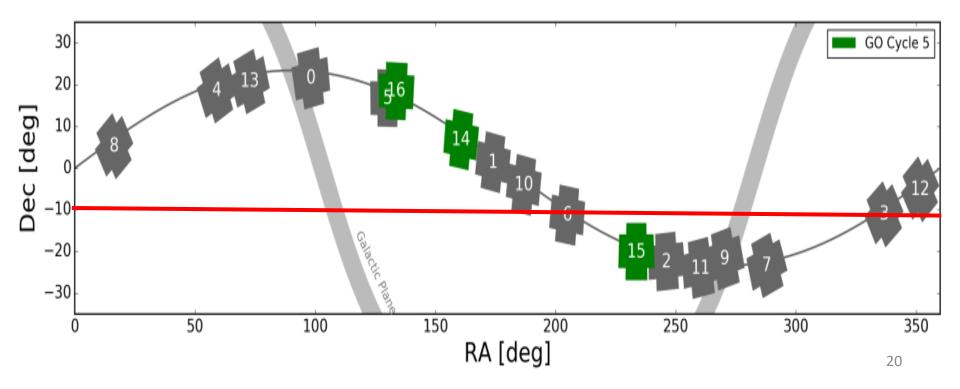
—Molenda-Żakowicz, J.; De Cat,P.; <u>Fu,J.N.</u>; Yang,X.H.; 2014, *IAUS*, 301, 457

"LAMOST observations in the Kepler field"

- -De Cat, P.; Fu, J.N.; et al. 2015, *EPJ Web Conf.*, 101, id.01011 "LAMOST observations in the Kepler field"
- —Molenda-Zakowicz, J.; De Cat, P.; Fu, J.N.; et al. 2015, IAU GA XXIX, Meeting #29, id.2250365

"The Kepler Field of View Covered with the LAMOST Spectroscopic Observations"

-Fu, J.N.; et al. 2015, IAU GA XXIX, Meeting #29, id.2255363 "Synergies between spectroscopic and asteroseismic surveys"


-Fu, J.N.; et al. 2017, AAS229, id.305.02

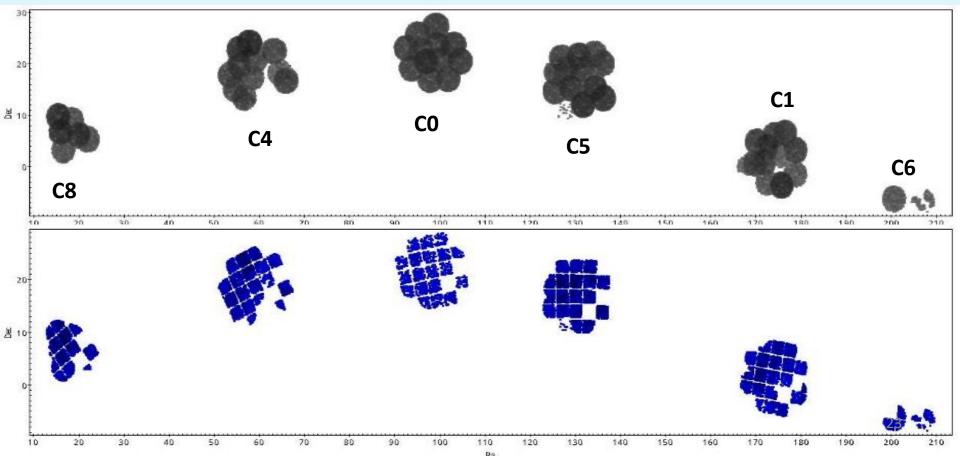
"Synergies between spectroscopic and time-series photometric surveys—LAMOST observations for the *Kepler* field and *K*2 fields"

§3 LAMOST-K2 project

• K2 mission

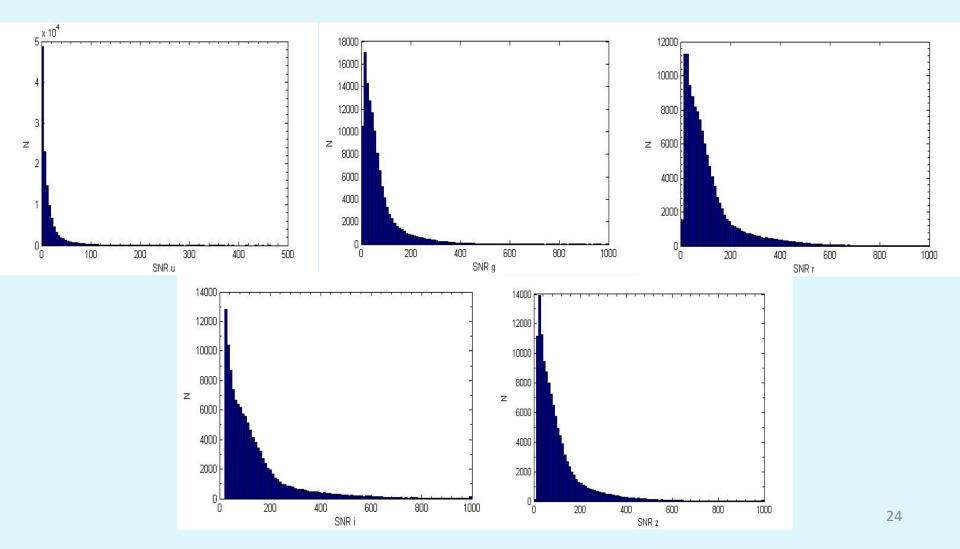
- 20 fields along the ecliptic (2014-2018)
- ~80 days for each campaign
- Targets: exoplanets, stars, open clusters.....
- LAMOST-K2: observe K2 fields with LAMOST

K2 Observations

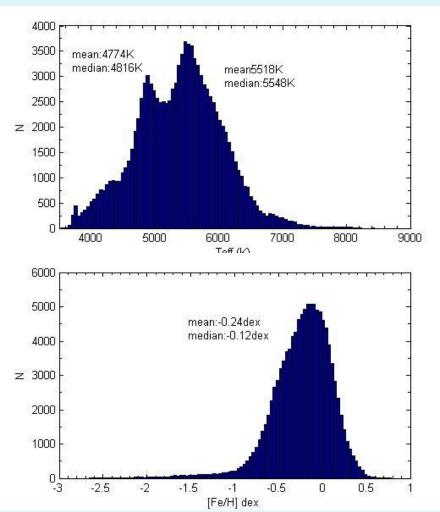

Field dates and positions

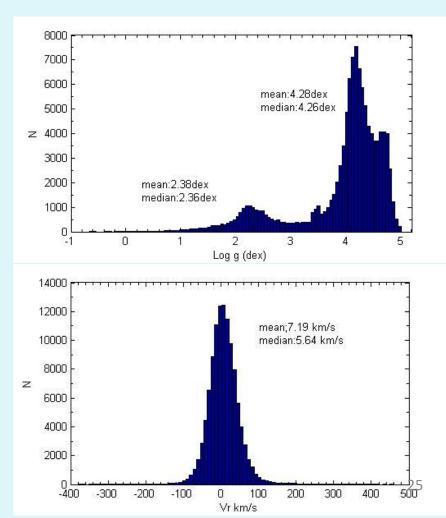
Field	Start	Stop	Data available	RA	Dec	Target list	Release notes	Comments
<u>0</u>	2014 Mar 08	2014 May 27	2014 Sep 08	06:33:11	+21:35:16	<u>~</u>	<u>*</u>	Near Galactic Anti-center, M35, NGC 2158
1	2014 May 30	2014 Aug 21	2014 Dec 23	11:35:46	+01:25:02	<u>*</u> .	<u>*</u>	North Galactic Cap
2	2014 Aug 23	2014 Nov 13	2015 Mar 16	16:24:30	-22:26:50	<u>*</u> .	<u>*</u>	Near Gal Center, M4, M80, M19, Upr Sco, p Oph
3	2014 Nov 14	2015 Feb 03	2015 Jul 17	22:26:40	-11:05:48	* .	<u>*</u>	South Galactic Cap, Neptune
4	2015 Feb 07	2015 Apr 23	2015 Sep 04	03:56:18	+18:39:38	* .	*	M45 (Pleiades), NGC1647, Hyades
5	2015 Apr 27	2015 Jul 10	2015 Oct 31	08:40:38	+16:49:47	* .	*	M44 (Beehive), M67
6	2015 Jul 14	2015 Sep 30	2016 Feb 12	13:39:28	-11:17:43	<u>*</u> .	*	North Galactic Cap
7.	2015 Oct 04	2015 Dec 26	2016 Apr 20	19:11:19	-23:21:36	<u>*</u> .	*	Near Galactic Center, NGC 6717, Pluto
8	2016 Jan 03	2016 Mar 23	2016 Jul 04	01:05:21	+05:15:44	*	*	Uranus, IC1613
<u>9</u> †	2016 Apr 21	2016 Jul 01	2016 Sep 30	18:01:25	-21:46:47	<u>*</u> .	<u>*</u>	Gal Center, M21, M18, M25, M8, Earth, Mars
10	2016 Jul 06	2016 Sep 20	2016 Dec 20	12:27:07	-04:01:38	<u>*</u> .	<u>*</u>	North Galactic Cap
11	2016 Sep 24	2016 Dec 08	2017 Jun 30	17:21:33	-23:58:33	<u>*</u> .	<u>*</u>	Galactic Center, Saturn
12	2016 Dec 15	2017 Mar 04	2017 Aug 2	23:26:38	-05:06:08	<u>*</u> .		South Galactic Cap, Chiron, Mars
13	2017 Mar 08	2017 May 27	2017 Sep 5	04:51:11	+20:47:11	<u>*</u> .		Hyades, Taurus
14	2017 May 31	2017 Aug 19	2017 Nov-Jan	10:42:44	+06:51:06	<u>*</u>		21 North Galactic Cap, Wolf 359, WASP-104

LAMOST-K2 Observations

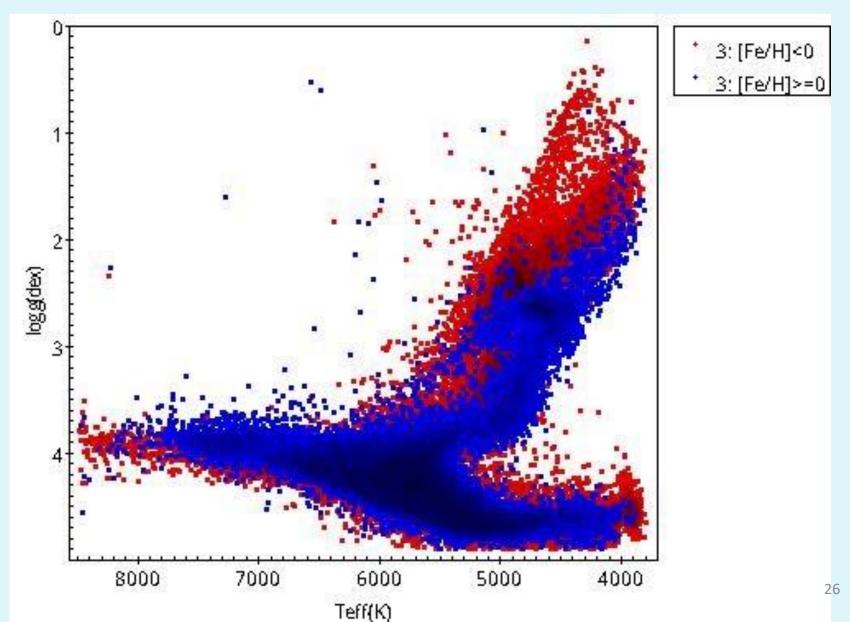

LAMOST- <i>K</i> 2 field	RA (2000.0)	DEC (2000.0)	Spectrum Number	Parameter Number
C8	01:05:12	+05:15:44	22645	13579
C4	03:56:18	+18:39:38	29522	21760
C0	06:33:11	+21:35:16	36071	25498
C5	08:40:48	+16:49:47	41408	28259
C1	11:35:46	+01:25:02	34374	22569
C6	13:39:28	-11:17:43	2061	1169

- Observation Date: Dec. 30, 2015 April 28, 2017
- 86 plates observed during 53 nights
- Spectra: 168,081; Parameters: 112,843
- LAMOST-*K*2 cross-matching targets: 24,661

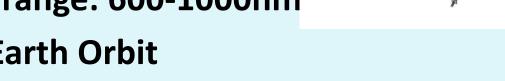

S/N distribution

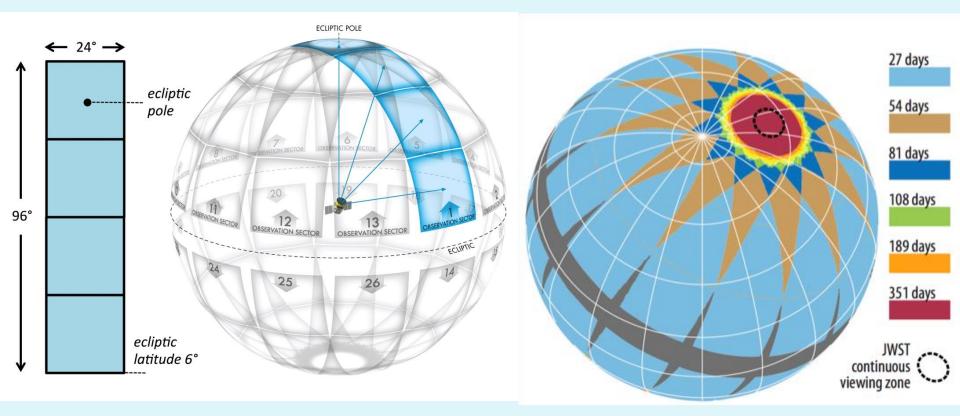

S/N_i>20: 126,675

Stellar parameter distribution


[Fe/H] <-1 dex: 3,104;
 |V_r|>300 km/s: 92

<-2 dex: 272

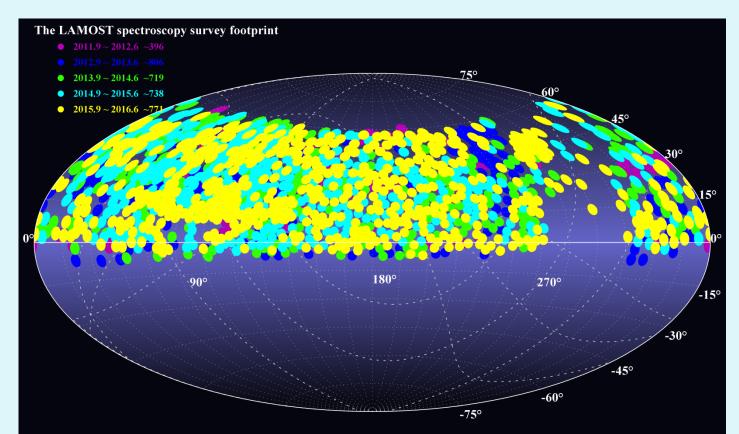

log g vs T_{eff}


§4 Prospect of LAMOST for TESS

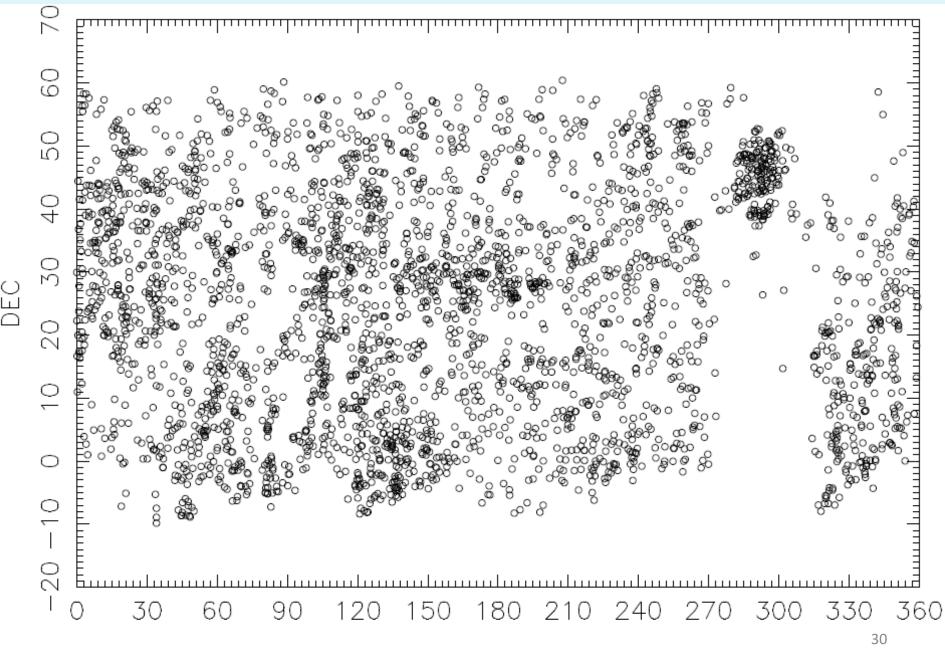
4.1 The NASA TESS mission

- -4 telescopes: aperture 10 cm
- -Field of view: 24°×24°/each
- -Wavelength range: 600-1000nm
- -Orbit: High Earth Orbit

- -Observation Plan: to be launched in 2018
 - 1 year for southern hemisphere sky
 - 1 year for northern hemisphere sky
- -Each field duration: ~27 days


The celestial sphere with 26 observation sectors (13 per hemisphere)

Duration of observations on the celestial sphere


4.2 TESS targets with LAMOST low-resolution

Spectra

- many stars brighter than ~16 mag in i with DEC >
 - -10° have been observed by LAMOST with lowresolution spectra (2011-2017)

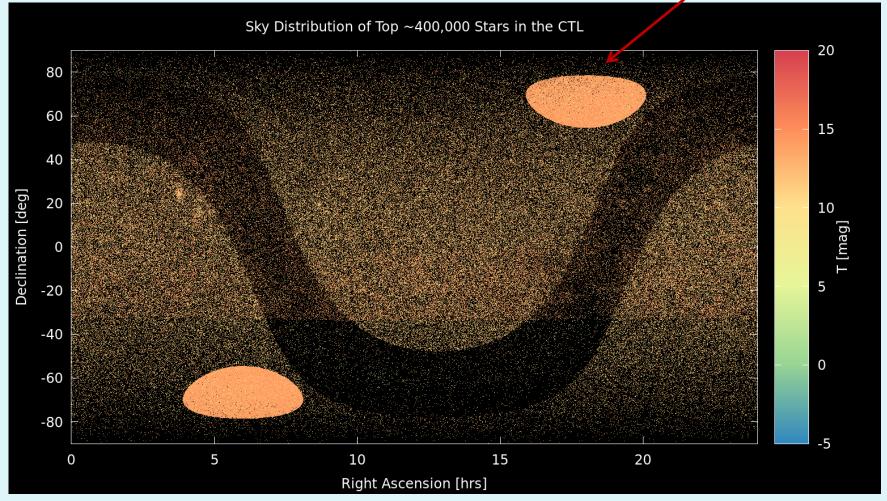
Available LAMOST spectra of the TESS targets (3,062 stars, Peter)

4.3 TESS targets with LAMOST mid-resolution Spectra

- 16 spectrographs with R=7500 since 2018
- Wavelength ranges:

4950 – 5350 Å; 6300 – 6800 Å

- Target stars: < 15 mag in i</p>
- Time-series spectra for some selected fields
 For variables: pulsators, binaries, etc
 Disk of the Galaxy
- Parameter measurement precisions expected:

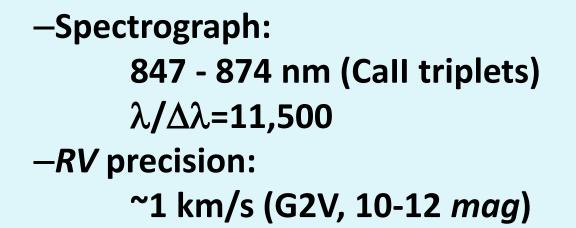

 T_{eff} : 100 K;
 log g: 0.1 dex

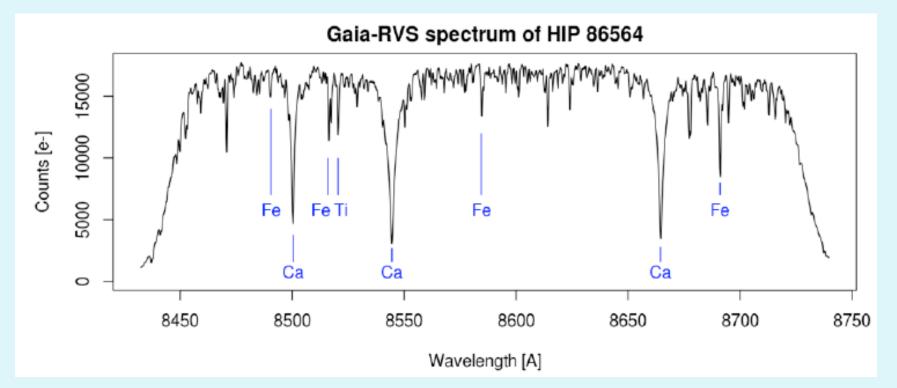
 [Fe/H]: 0.1 dex;
 V_r : < 1 km/s</td>

 [α /Fe]: 0.1 dex

Observation plan

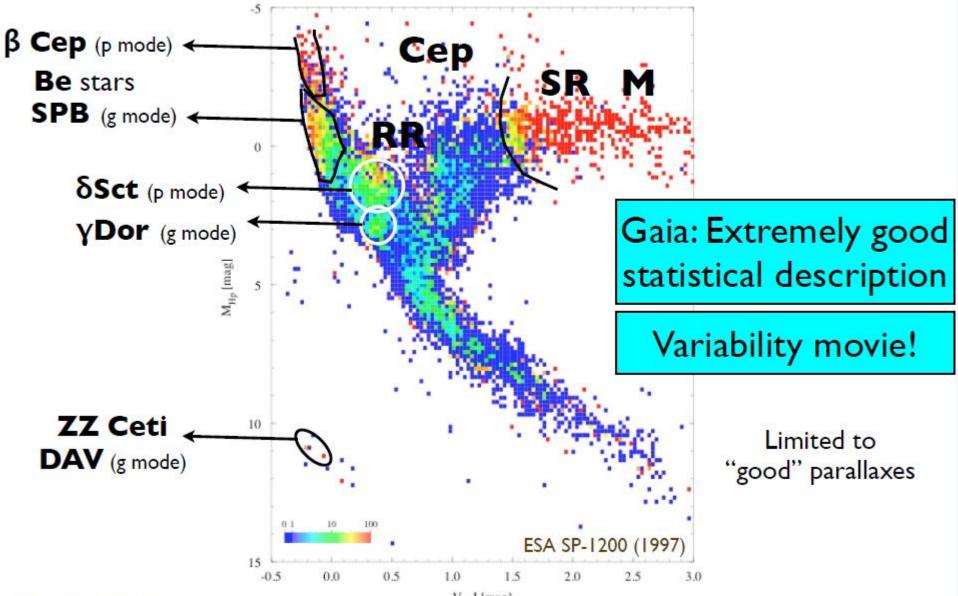
Targets I: 82,000 stars in 440 deg² of Northern Ecliptic Pole (NEP) *T*<15 *mag*, ~3700 stars/plate in average




Targets II: ~1,000,000 stars on the whole sky, T<12 mag (Dong & Xie)

§5 Synergies between LAMOST with GAIA

- 5.1 The ESA GAIA mission
 - -Targets: ~1 billion V<20^m stars
 - -Observations: astrometry,
 - multi-color photometry,
 - spectroscopy (RV)
 - -Launched: 19/12/2013
 - -Schedule: 5+1 years, ~70 times/the whole sky
 - -DR1: Sept. 2016
 - Full data release: 2021-2022



Variability processing

(From Dr. N. Mowlavi)

Fraction of variables (Hipparcos precision)

N. Mowlavi Beijing + Urumgi 06/2014

V - I [mag]

Variability processing

~50-150 million variable objects for Gaia

- 0.5 or **4** or 7 million **Eclipsing Binaries** (Söderhjelm 2004, Eyer etal. 2013, Zwitter 2002)
- few 100s to few 1000s or 5,000-30,000 Planetary transits (Dzigan & Zucker 2012, Robichon 2002)
- 60,000-240,000 δ Scuti stars (Eyer&Cuypers 2000)
- 70,000 RR Lyrae stars (Eyer&Cuypers 2000)
- 2,000-8000 or 9,000 Cepheids (Eyer&Cuypers 2000, Windmark et al. 2011
- 6,000 SuperNovae to G=19 for alert system (Gilmore, Belokurov 2009)
- 1,000 Micolensing events
- 500,000 Quasars

5.2 Synergies between LAMOST and GAIA

• GAIA:

astrometry precision ~10 μ arcsec parallax, proper motion tangential velocity

• LAMOST:

 T_{eff} , log g, [Fe/H], [α /Fe], RV, vsin i

• Synergies:

structure of the Milky Way archeology of the MW pulsating variables binaries open clusters (Talk of Chao)

§6 Summary

- LAMOST has made observations for a large amount of stars in the *Kepler* field and *K*2 fields
- For the *Kepler* field, 181,912 qualified lowresolution spectra are obtained with stellar parameters calculated
- For 6 K2 fields, 126,675 spectra are observed with stellar parameters measured
- Research has been made with the obtained data, leading to some scientifically interesting results

• Next Step I:

- Continue observations of the two projects
- Calibrate stellar parameters for the K2 fields, including using log g from asteroseismology and parameters from APOGEE (Talk of Ruyuan)
- More research work with the LAMOST-Kepler and LAMOST-K2 data (e.g. Li-rich stars, Talk of Mengqi)
- Next Step II:

– Mid-resolution spectra: K2 field C0 and TESS/NEP

• Future possibility:

– LAMOST for the targets of the ESA/PLATO mission?

Data Policy of LAMOST

- Internal release
 - Chinese astronomers
 - International collaborators (with Chinese groups involved)
 - DR1: 2013.09
 - DR2: 2014.12
 - DR3: 2015.12
 - DR4: 2016.12
 - DR5: 2017.12 expected
- Public release (1.5 yrs later)
 - DR1 (2015.03) : 1.8 M spectra / 1.0 M parameters
 - DR2 (2016.06): 3.0 M spectra / 2.1 M parameters
 - DR3 (2017.06): 5.7 M spectra / 3.2 M parameters

The First LAMOST-Kepler Workshop August 18-22, 2014; Beijing Website: <u>http://202.112.85.102/meeting/kepler_lamost2014/</u>

Wish The Second LAMOST-*Kepler* Workshop To Be Successful!

Thanks for your attention !