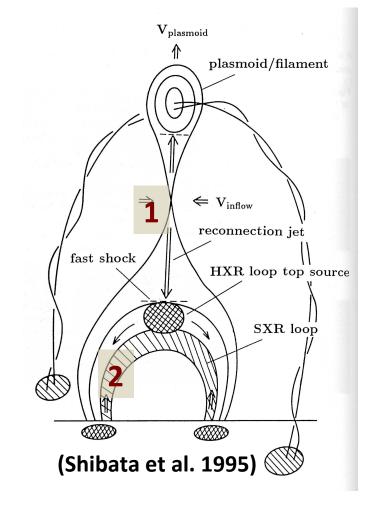

Update on quasi-periodic pulsations in solar flares

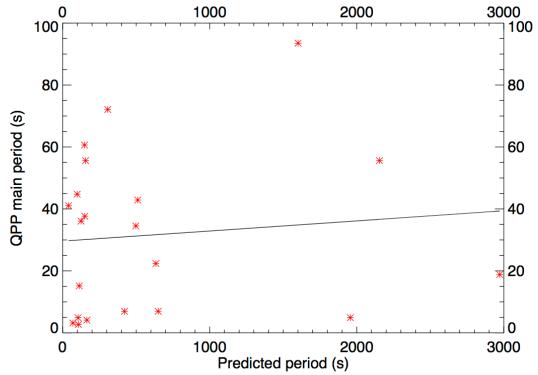
M. Dominique, A.N. Zhukov, L. Dolla
 Royal Observatory of Belgium / STCE
 G. Lapenta, KUL
 D. Ryan, NASA-GSFC
 L. Hayes, Trinity College Dublin

CHARM meeting, March 10 2017, Brussels

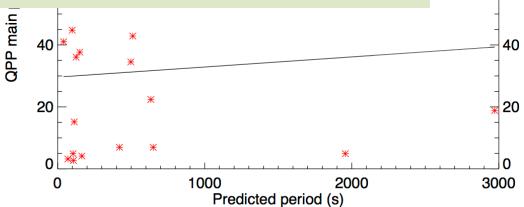
What are QPPs?


- Oscillations during stellar and solar flares
- Periods ranging from sub-second to minutes
- Some confined to the impulsive phase, others also covering the decay phase

Parks and Winckler, ApJ, 1969


Origin of the QPP

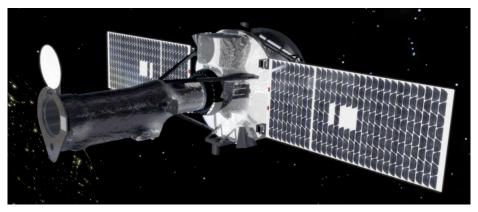
- Two main mechanisms are evoked:
- 1. Fluctuating reconnection process
- 2. MHD wave
 - 1. Modulation of the electron beam
 - 2. Modulation of the heated plasma in the post-flare loops


So far ...

- Detection of QPPs in EUV -> PROBA2/LYRA and SDO/EVE
- Analysis of M5+ flares of cycle 24 : 72 flares analyzed, of which 55 were confirmed to display QPPs with periods between 8 and 100s
- No obvious correlation between the detected periods and
 - Alfvén speed
 - Plasma β

So far ...

- Detection of QPPs in EUV -> PROBA2/LYRA and SDO/EVE
- Analysis of M5+ flares of cycle 24 : 72 flares analyzed, of which 55 were confirmed to display QPPs with periods betwee An indication that they are not wave
- No ob correl
 the de and
 Spectral data might help identifying a wave signature.
 - Alfvén speed
 - Plasma β



3000

80

60

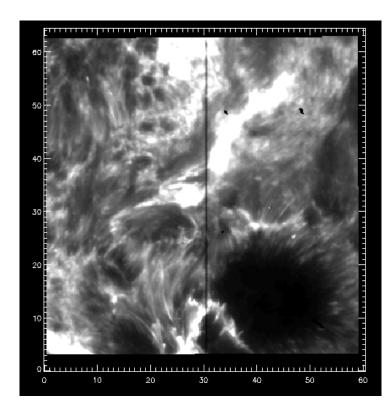
New perspectives with IRIS?

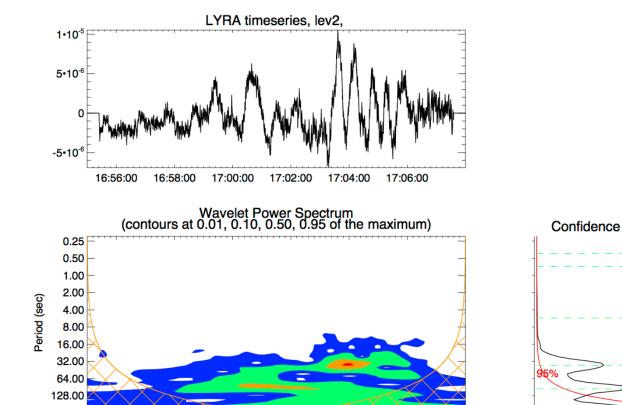
• Spectrograph in raster mode is max. 130 x 175 arcsec²

Band	Wavelength [Å]	Disp. [mÅ pix ⁻¹]	FOV [″]	Pixel ["]	CEB	Shutter	EA [cm ²]	Temp. [log T]
FUV 1	1331.7-1358.4	12.98	175	0.1663	1	FUV SG	1.6	3.7-7.0
FUV 2	1389.0-1407.0	12.72	175	0.1663	1	FUV SG	2.2	3.7-5.2
NUV	2782.7-2835.1	25.46	175	0.1664	2	NUV SG	0.2	3.7-4.2

• Slit-jaw imager, 175 x 175 arcsec²

Band- pass	Filter wheel	Name	Center [Å]	Width [Å]	FOV ["×"]	Pix. ["]	EA [cm ²]	Temp. [log T]
Glass	1 T	5000	5000	broad	175 ²	0.1679	_	-
Сп	31 M	1330	1340	55	175 ²	0.1656	0.5	3.7-7.0
Mg II h/k	61 T	2796	2796	4	175 ²	0.1679	0.005	3.7-4.2
Si IV	91 M	1400	1390	55	175 ²	0.1656	0.6	3.7-5.2
Mg II wing	121 T	2832	2830	4	175 ²	0.1679	0.004	3.7-3.8
Broad	151 M	1600W	1370	90	175 ²	0.1656	-	-


New perspectives with IRIS?


- Chromospheric observations
- Advantage: spatial (slit jaw images) and spectral (raster) observations
- So far, limited observation of flares with high cadence
- However, already a few detections of QPP published

Date	Class	Periods	Source
18 April 2014	M7.3	95-125s	<u>Brosius &</u> Daw 2015
10 September 2014	X1.6	4min	<u>Li et al. 2015</u>
12 March 2015	M1.6	25s	<u>Tian et al.</u> <u>2016</u>
16 October 2015	C3.1	32-42s	<u>Zhang et al.</u> <u>2016</u>

A new case: X1.0 Flare of 2014/10/25

- Raster acquisitions at a cadence of 5.5s
- SJI acquisition at a cadence of 16s
 - Wavelengths:
 - C II 1336, log(T) = 3.7 7
 - Mg II k 2796, log(T) = 3.7 4.2
 - Mg II wings, log(T) = 3.7 3.8

17:00:00 17:02:00

Time (h)

17:04:00

17:06:00

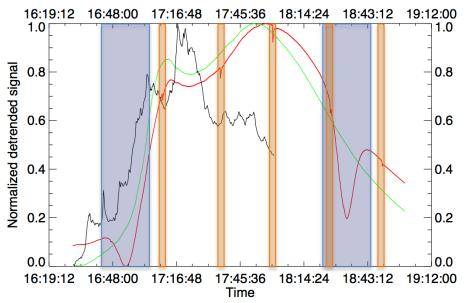
16:56:00

16:58:00

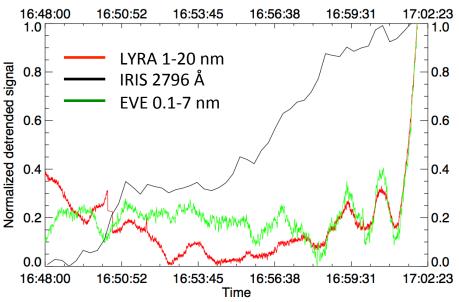
1000 2000 Power

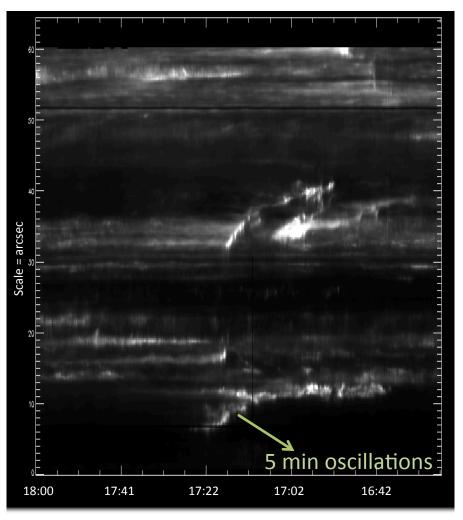
0

0.4

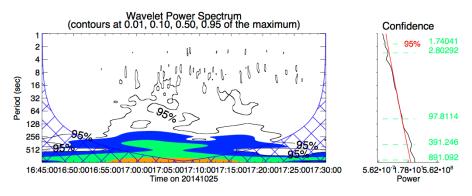

0.6

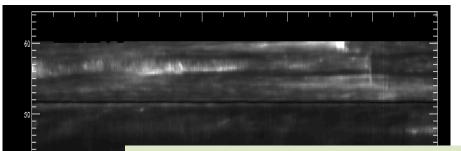
5.!

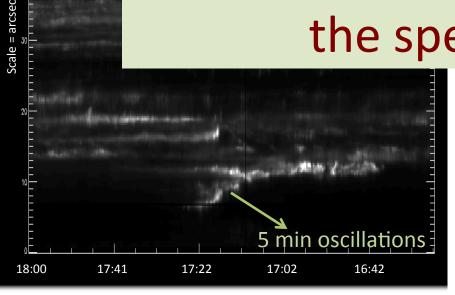

37

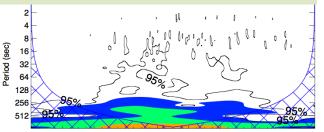

97

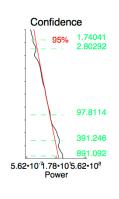
19




From the slit-jaw images, two periods seem to be present, even at the low emission temperature of IRIS. cadence IRIS SJI = 16s, wavelength = 2796 Å


In the space-time diagram corresponding to the slit position, no structure periods of 37 or 97s. However, we can see a 5-min period oscillation.




In the space-time diagram corresponding to the slit position, no structure periods of 37 or 97s. However, we can

Continue the investigation in the spectrum

^{6:45:0016:50:0016:55:0017:00:0017:05:0017:10:0017:15:0017:20:0017:25:0017:30:00} Time on 20141025

illation.

Conclusions

- We have identified a new QPP case with IRIS
- Spatio-temporal analyses show several ranges of periods: 40s, 100s, 390s
- A wave signature exists for the 390s period
- Next step: search for wave signatures in the spectral data