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Astrophysical outflows
Stars and black holes can launch flares from their 

corona
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These outflows are a source of extremely 

energetic particles guided by magnetic fields

Accelerated, charged particles (electrons, 

positrons, protons) emit observable radiation

Reconnection is a possible generic mechanism 

behind flares and particle acceleration[Images from NASA/JPL-Caltech, 

http://sdo.gsfc.nasa.gov/]



Magnetic reconnection
• Current dissipation through resistivity � Magnetic field reconnection

• Multi-scale character: fluid theory (MHD) � kinetic theory (particles) 

• Excess magnetic energy � Particle acceleration in jets and flares
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[Images obtained from Keppens, Coupling         

Multiple Scales, NBIA school 2013]

How do we model phenomena at such different scales?



The continuum picture

( ) 0=+∇ µνµν
µ EMf TT

( ) 00 =∇ µ
µ ρ u

cJF /µµν
ν =∇

0][ =∂ ναµ F Coupling

Magnetohydro-
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Navier-Stokes equationsMaxwell’s equations

E(t), B(t)

ρ, J

ρ(t), u(t)

E, B

MPI-AMRVAC: 
parallel, grid-
adaptive code



Initiating reconnection in MHD
• 2D force-free ideal MHD equilibrium: two repelling currents

• � Tilt instability and resistivity � Reconnection � Particle 

acceleration
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Sketch taken from Lankalapalli et al, JCP 225 (2007)

• 3D effects � Kink (in)stability
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J(t=0)
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J(t=4)
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J(t=5)
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J(t=5.5)
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J(t=6)
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J(t=6.5)
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J(t=7)
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J(t=7.5)
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J(t=8)



• β = 0.04

• Similar 

behaviour for 

larger β, but  

delayed

• Secondary  

J(t=8.5)
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• Secondary  

islands

• Reconnection

• Fast forming 

current sheets

� Particle   

acceleration



… and now with particles
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Particles follow fields 

Relativistic test particles 
in MHDcJF /µµν
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motion
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Still obtained from 

fluid equations



Which particles are we interested in?

Two populations of particles are considered

• Thermal plasma described by a Maxwellian distribution.

� MHD is a satisfactory description.

� The largest scales of the system are studied.
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• Non-thermal plasma, with highly accelerated particles and 

a power law distribution.

� Relativistic particle equations of motion are required.

� The microscopic scales of the system are studied. 



So for now..
• Fluid models: Good for global dynamics and energetics

But.. fail to tell you anything about kinetic processes

• Kinetic models: The opposite...

�Assume fluid models are largely correct and see how test 

particles behave in the global flow:
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particles behave in the global flow:

• Acceleration mechanisms 

• Particle orbits and drifts

• Non-thermal distributions 

• (Radiation)



Assumptions 
• Low                     (e.g. solar flares)

• Low                      (non-relativistic MHD)

• � relativistic particles in MHD evolutions

• MHD � magnetic field, velocity and density

[Northrop, The Adiabatic Motion of Charged Particles, (1963)]
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• Test particles � collisions and effect on fields ignored

• Gyroradius

� Replace particles position by its guiding centre

[Goedbloed & Poedts, Principles of Magnetohydrodynamics, (2004)]
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Which regions are interesting?

Topological measure 

of reconnection 
[Lapenta et al., Nature, 2015]
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Test particles initialisation
• 20.000 Maxwellian electrons/protons

• Randomly and uniformly initialised

• 99% in area current channels

Particles coloured by parallel velocity
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2.5D results: Energy distribution

20.000 Electrons 20.000 Protons

Lorentznon-thermal
non-thermal

thermal
thermal
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• Particle distribution develops high energy tail

• Thermal bath is applied in periodic direction

• Guiding centre approximation valid



3D MHD effects

• Magnetic tension delays linear growth phase of instability
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3D MHD effects
• Additional kink
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3D MHD effects
• Reconnection 

everywhere
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3D results: Energy distribution
20.000 Electrons 20.000 Protons

2.5D 2.5D
thermal non-thermal thermal non-thermal

3D 3D
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• Kink adds medium energy tail and redistributes particles in

the thermal distribution 

• Results confirmed for 200.000 electrons



3D results: Pitch angle distribution
20.000 Electrons
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• Pitch angle strongly peaked around 0

• Acceleration in direction parallel to magnetic field



3D results: Spatial distribution
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200.000 electrons at t = 9 

coloured by Lorentz factor



3D results: individual particle orbit
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Lorentz factor evolution

• Thermalised after cycle 

through current channel

• Expelled from current 

channel by kink

• Decelerates to thermal 

energy and re-accelerates



...  But charged particles do affect fields!
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Very time consuming for 

many (interacting) particles!
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Lorentz equation

E(t), B(t)

ρ, J

Maxwell’s equations

x(t), v(t)
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