KU LEUVEN

Particle acceleration in explosive reconnection

CHARM@ROB March 10th 2017

Bart Ripperda, Rony Keppens, Oliver Porth Centre for mathematical Plasma-Astrophysics Department of Mathematics, KU Leuven

Astrophysical outflows

Stars and black holes can launch flares from their corona

These outflows are a source of extremely energetic particles guided by magnetic fields

Accelerated, charged particles (electrons, positrons, protons) emit observable radiation

Reconnection is a possible generic mechanism behind flares and particle acceleration

[Images from NASA/JPL-Caltech, http://sdo.gsfc.nasa.gov/]

Magnetic reconnection

- Current dissipation through resistivity → Magnetic field reconnection
- Multi-scale character: fluid theory (MHD) → kinetic theory (particles)
- Excess magnetic energy → Particle acceleration in jets and flares

How do we model phenomena at such different scales?

The continuum picture

$$\partial_{[\mu}F_{\nu\alpha]}=0$$

$$\partial_{[\mu} F_{\nu\alpha]} = 0$$

$$\nabla_{\nu} F^{\mu\nu} = J^{\mu}/c$$

Coupling

Magnetohydrodynamics (MHD)

$$\nabla_{\mu}(\rho_0 u^{\mu}) = 0$$

$$\nabla_{\mu} \left(\rho_0 u^{\mu} \right) = 0$$

$$\nabla_{\mu} \left(T_f^{\mu \nu} + T_{EM}^{\mu \nu} \right) = 0$$

E(t), **B**(t)

ρ, **J**

Maxwell's equations

MPI-AMRVAC: parallel, gridadaptive code

E, B

Navier-Stokes equations

KU LEUVEN

Initiating reconnection in MHD

- 2D force-free ideal MHD equilibrium: two repelling currents
- → Tilt instability and resistivity → Reconnection → Particle acceleration

Sketch taken from Lankalapalli et al, JCP 225 (2007)

3D effects → Kink (in)stability

and now with particles

$$\partial_{[\mu} F_{\nu\alpha]} = 0$$

$$\nabla_{\nu} F^{\mu\nu} = J^{\mu}/c$$

$$\nabla_{\nu}F^{\mu\nu} = J^{\mu}/c$$

Particles follow fields

Relativistic test particles in MHD

$$\frac{dx^{\mu}}{d\tau} = v^{\mu}$$

$$\frac{d^2x^{\mu}}{d\tau^2} = F^{\mu\nu} \frac{dx^{\nu}}{d\tau}$$

E(t), **B**(t) → ρ, J

Maxwell's equations

Still obtained from fluid equations

Relativistic equations of motion

x(t), **v(t)**

E, B

Which particles are we interested in?

Two populations of particles are considered

- Thermal plasma described by a Maxwellian distribution.
 - → MHD is a satisfactory description.
 - → The largest scales of the system are studied.
- Non-thermal plasma, with highly accelerated particles and a power law distribution.
 - → Relativistic particle equations of motion are required.
 - → The microscopic scales of the system are studied.

So for now...

- Fluid models: Good for global dynamics and energetics
 But.. fail to tell you anything about kinetic processes
- Kinetic models: The opposite...
- → Assume fluid models are largely correct and see how test particles behave in the global flow:
- Acceleration mechanisms
- Particle orbits and drifts
- Non-thermal distributions
- (Radiation)

[Northrop, The Adiabatic Motion of Charged Particles, (1963)]

Assumptions

- Low $\beta = 2p/B^2$ (e.g. solar flares)
- Low $\sigma \rightarrow v_A \ll c$ (non-relativistic MHD)

- MHD → magnetic field, velocity and density
- Test particles → collisions and effect on fields ignored
- Gyroradius $R_c = \frac{\gamma m v_{\perp}}{Ba} \sim 10^{-1} m 10^{-3} m \ll \text{grid cell size} \sim 10^3 m$
 - → Replace particles position by its guiding centre

Particle	LJ	LJ			$v_{thermal} [m/s]$					γ [–]
Electron	$0.03 \ T$	$10^6 K$	$10^{16} \ m^{-3}$		$5.5 \times 10^7 \ ms^{-1}$	(0.0004	$10^{-3} \ m$		1.0002
Proton	$0.03 \ T$	$10^6 K$	$10^{16} \ m^{-3}$	V	$1.3 \times 10^6 \ ms^{-1}$		0.0004	$4.4 \times 10^{-2} \ n$	n	1.0000

[Goedbloed & Poedts, Principles of Magnetohydrodynamics, (2004)]

KU LEUVEN

Guiding center

Particle

Topological measure of reconnection [Lapenta et al., Nature, 2015]

$$\mathbf{B} \times (\nabla \times (E_{//}/B))/B \neq 0$$

Test particles initialisation

Particles coloured by parallel velocity

- 20.000 Maxwellian electrons/protons
- Randomly and uniformly initialised
- 99% in area current channels

2.5D results: Energy distribution

- Particle distribution develops high energy tail
- Thermal bath is applied in periodic direction
- Guiding centre approximation valid

3D MHD effects

Magnetic tension delays linear growth phase of instability

Cycle: 90

3D MHD effects

3D results: Energy distribution

- Kink adds medium energy tail and redistributes particles in the thermal distribution
- Results confirmed for 200.000 electrons

3D results: Pitch angle distribution

- Pitch angle strongly peaked around 0
- Acceleration in direction parallel to magnetic field

3D results: Spatial distribution gamma 4.000e+00 1.000e+00 200.000 electrons at t = 9coloured by Lorentz factor

... But charged particles do affect fields!

