Particle transport in turbulent MHD structures

Andreas Kopp and Bernard Knaepen

Université Libre de Bruxelles,

Topic

Topic: Transport of charged particles in turbulent MHD fields

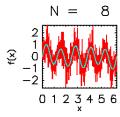
MHD: The MHD equations are solved in wavenumber-space (via Fourier transformation)

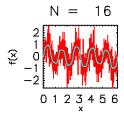
Focus: Contribution of high wavenumbers in this fields to the particle transport:

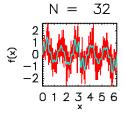
- highly resolved computations are costly regarding time, memory and disk space:
- high wave-numbers: fine structures on top of "averaged" structure
- idea: use lower resolution and replace high-wavenumber contributions by transport parameters such as an external force

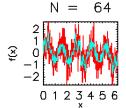
Reduction of Fourier modes

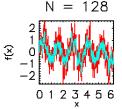
Representation of a fine structure by superposition of Fourier modes:

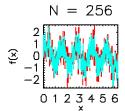












Reduction of Fourier modes

Fourier transformation in 1D with N grid points:

$$f(x_{\alpha}) = \sum_{\beta=1}^{N} F(k_{\beta}) e^{ix_{\alpha}k_{\beta}}, \qquad 1 \leq \alpha \leq N$$

N determines:

- the number of modes to be summed up
- the grid resolution of each mode, β , in space: $x_1, \ldots, x_{\alpha}, \ldots, x_N$
- → reducing the **number of modes** reduces also the **grid resolution**

But, there is a second way to reduce the number of modes:

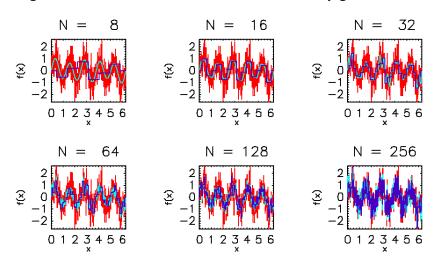
reduction 1: reduce N to $N_0 < N$ and, thus, also the grid resolution (\uparrow) reduction 2: keep N, but set $F(k_\beta) = 0$ for $\beta \ge N_0$

 \rightarrow same high resolution* with less modes

^{*}drawback: time, memory requirements etc. also remain the same

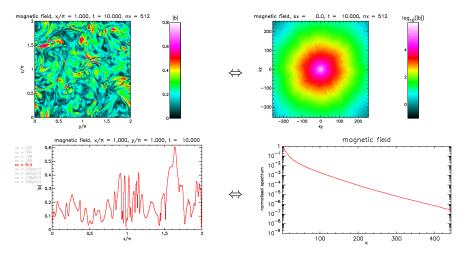
Reduction of Fourier modes

Taking the resolution into account, reduction 1 actually gives:



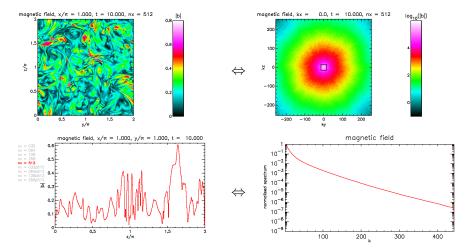
Application to MHD: full field $(n_x = 512)$

Magnetic field: real and wavenumber spaces: $\vec{b}(\vec{r},t) = \sum_{|\vec{k}| < 256} \vec{B}(\vec{k},t) e^{i\vec{k}\cdot\vec{r}}$:



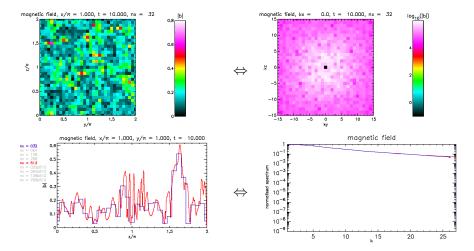
Application to MHD: full field $(n_x = 512)$

Magnetic field: real and wavenumber spaces: $\vec{b}(\vec{r},t) = \sum_{|\vec{k}| < 256} \vec{B}(\vec{k},t)e^{i\vec{k}\cdot\vec{r}}$:



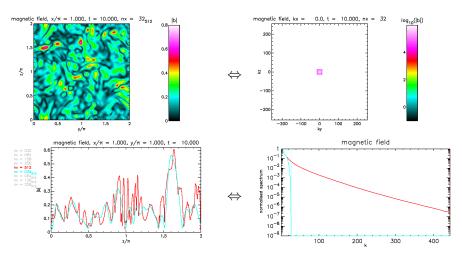
Application to MHD: reduction 1 ($n_x = 32$)

Reduce resolution, cut off all $|\vec{k}| \geq 16$: $\vec{b}(\vec{r},t) = \sum_{|\vec{k}| < 16} \vec{B}(\vec{k},t) e^{i\vec{k}\cdot\vec{r}}$:



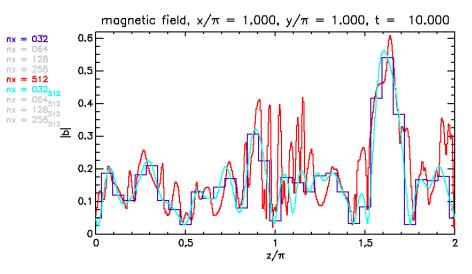
Application to MHD: reduction 2 ($n_x = 32$)

Keep resolution, but filter: $\vec{b}(\vec{r},t) = \sum_{|\vec{k}| < 256} \Theta(|\vec{k}| < 16) \vec{B}(\vec{k},t) e^{i\vec{k}\cdot\vec{r}}$:



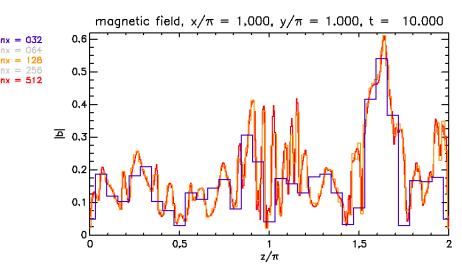
 Θ : Heaviside function: $\Theta=1$ for $|\vec{k}|<16$, $\Theta=0$ for $|\vec{k}|\geq16$

Comparison of reductions 1 and 2



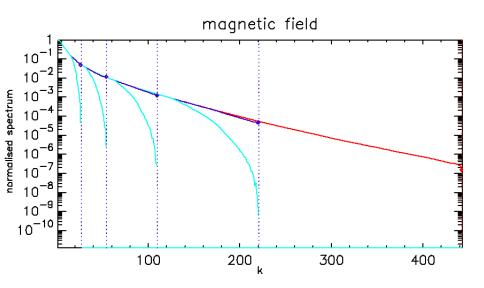
reduction 2 works as "high-order spline" interpolation of reduction 1

Comparison of $n_x = 32$ and $n_x = 128$ for reduction 1



 $n_{\rm x}=128$ catches more fine structures, rather than to interpolate $n_{\rm x}=32$

Spectra of the magnetic field (normalised)



(reduced) MHD equations

Take a fluid picuture rather than a kinetic approach and assume:

- ullet constant mass density $ho=
 ho_0$
- divergence-free plasma flow: $\vec{\nabla} \cdot \vec{u} = 0$
- periodic boundary conditions

The MHD equations read for this case:

$$\begin{array}{ll} \frac{\partial \vec{u}}{\partial t} & = & -\left(\vec{u}\cdot\vec{\nabla}\right)\vec{u} + \left(\vec{b}\cdot\vec{\nabla}\right)\vec{b} + \nu\Delta\vec{u} - \frac{1}{\rho}\vec{\nabla}p_{\rm tot} \\ \frac{\partial \vec{b}}{\partial t} & = & -\left(\vec{u}\cdot\vec{\nabla}\right)\vec{b} + \left(\vec{b}\cdot\vec{\nabla}\right)\vec{u} + \eta\Delta\vec{b} \end{array}$$

- fluid velocity <u>u</u>
- magnetic field $\vec{B} \to \text{Alfv\'en velocity } \vec{b} = \frac{1}{\sqrt{\mu_0 \rho}} \vec{B}$
- viscosity ν and resistivity η
- total (gas plus magnetic) pressure p_{tot}

Fourier transformation

The MHD equations are solved in Fourier space (sum over grid indices):

$$\vec{U}(\vec{k},t) = \sum_{\vec{r}} \vec{u}(\vec{r},t) e^{-i\vec{k}\cdot\vec{r}}$$

$$\vec{B}(\vec{k},t) = \sum_{\vec{r}} \vec{b}(\vec{r},t) e^{-i\vec{k}\cdot\vec{r}}$$

(operators reduce:
$$\vec{\nabla} \cdot \vec{u} \rightarrow i \vec{k} \cdot \vec{U}$$
 or $\vec{\nabla} \times \vec{b} \rightarrow i \vec{k} \times \vec{B}$)

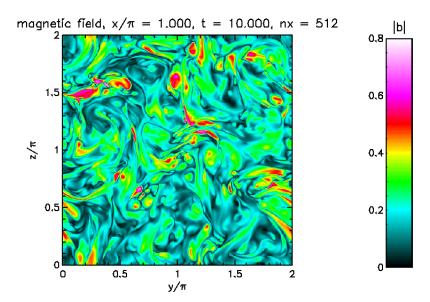
 \rightarrow Solve (with p_{tot} being set into the first equation)

$$\frac{\partial U_{\alpha}(\vec{k},t)}{\partial t} = \dots$$

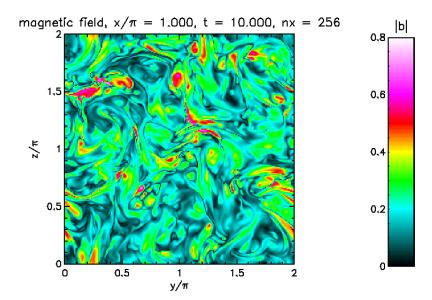
$$\frac{\partial B_{\alpha}(\vec{k},t)}{\partial t} = \dots$$

with TURBO. The time integration is performed with a modified Williamson/Runge-Kutta scheme

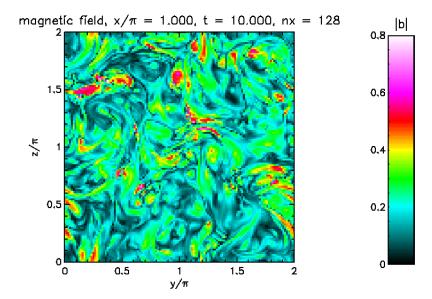
$\overrightarrow{B}(\overrightarrow{r}) (n_{\scriptscriptstyle \mathrm{X}} = 512)$



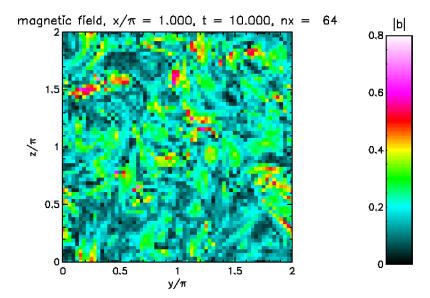
$ec{\mathcal{B}}(ec{r})$ $(n_{ ext{x}}=512, ext{ reduced } (1) ext{ to } n_{ ext{x}}=256)$



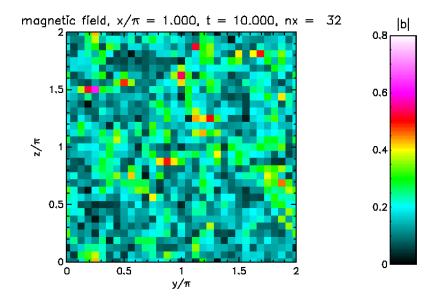
$ec{B}(ec{r})\;(n_{ ext{ iny x}}=512, ext{ reduced } (1) ext{ to } n_{ ext{ iny x}}=128)$



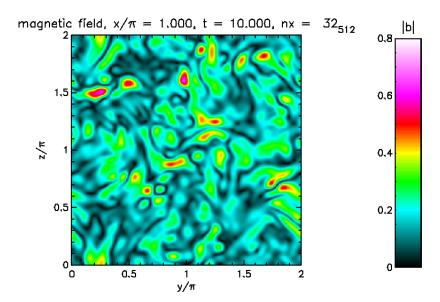
$ec{B}(ec{r}) \; (n_{ ext{ iny x}} = 512$, reduced (1) to $n_{ ext{ iny x}} = 64)$



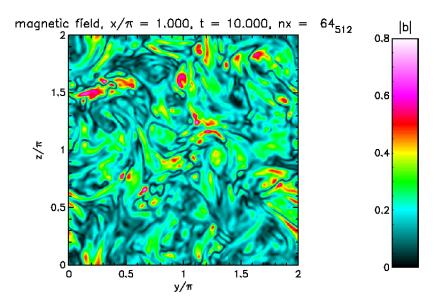
$ec{B}(ec{r}) \; (n_{ ext{ iny x}} = 512$, reduced (1) to $n_{ ext{ iny x}} = 32)$



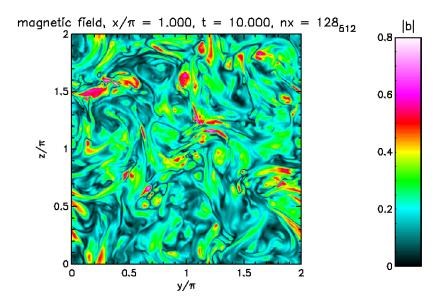
$\vec{B}(\vec{r})$ $(n_x = 512$, reduced (2) to $n_x = 32$)



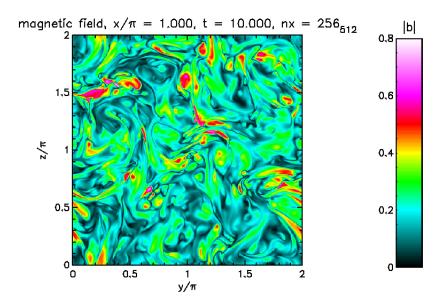
$ec{B}(ec{r})$ $(n_{ ext{ iny x}}=512$, reduced (2) to $n_{ ext{ iny x}}=64)$



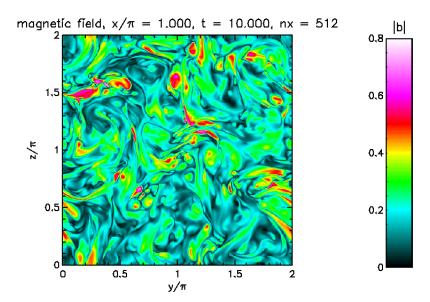
$ec{B}(ec{r})$ $(n_{ ext{ iny x}}=512$, reduced (2) to $n_{ ext{ iny x}}=128)$



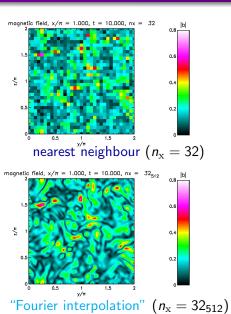
$ec{\mathcal{B}}(ec{r})$ $(n_{ ext{x}}=512, ext{ reduced (2) to } n_{ ext{x}}=256)$

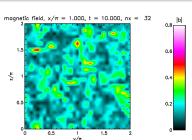


$\overrightarrow{B}(\overrightarrow{r}) (n_{\scriptscriptstyle \mathrm{X}} = 512)$

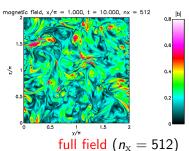


$\vec{B}(\vec{r})$: comparisons for $n_x = 32$





linear interpolation ($n_{
m x}=32 o 512$)



Particle transport in MHD fields

The TURBO particle code:

- propagates a set of charged particles with mass $m_{\rm p}$ and velocity $\vec{v}_{\rm p}(t)$, resulting in trajectories $\vec{r}_{\rm p}(t)$
- ullet the initial values are $ec{r}_{\mathrm{p},0}$ and $ec{v}_{\mathrm{p},0}$ at time t=0:

$$\vec{r}_{\rm p,0}$$
: two cases:

all particles at the same place or randomly distributed

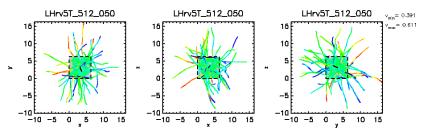
 $ec{v}_{\mathrm{p},0}$: random direction with same speed v_0

$$p \in \{1, \ldots, N_p\}$$

- the MHD fields are frozen in time, but TURBO also allows to simulate the evolutions of both fields and particles
- Runge-Kutta scheme with spline-interpolation of the MHD fields and control of the time-step

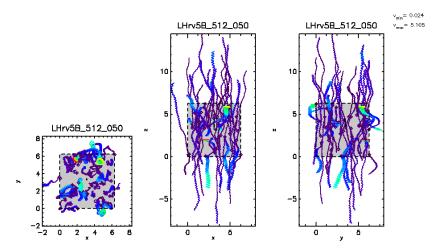
Code validation: energy conservation

Sample trajectories with no background magnetic field:



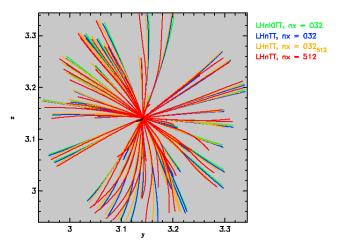
(colour = speed, random starting points with $v_0 = 0.5$)

Sample trajectories with a background magnetic field, $b_{0,z}$:



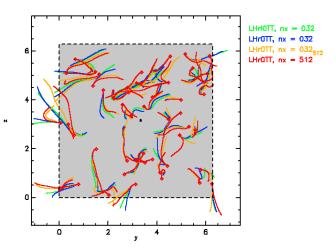
(colour = speed, random starting points with $v_0 = 0.5$)

Early time, trajectories for different resolutions, same starting point:



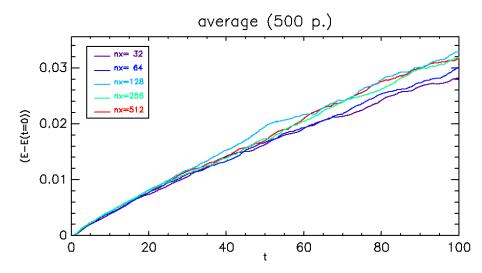
(green: linear interpolation, else: 6-point splines)

Early time, trajectories for different resolutions, random starting points:

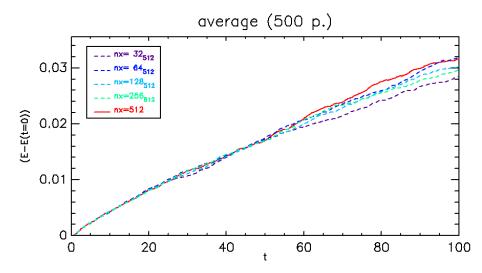


(green: linear interpolation, else: 6-point splines)

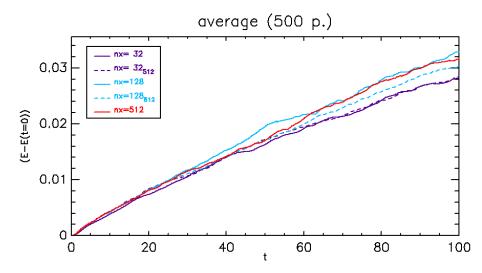
Averaged kinetic energy for different resolutions and reduction 1:



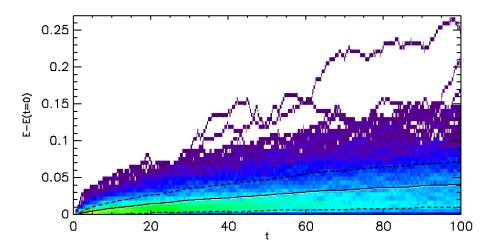
Averaged kinetic energy for different resolutions and reduction 2:



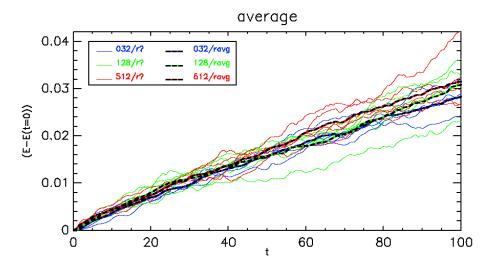
Averaged kinetic energy for different resolutions and both reductions:



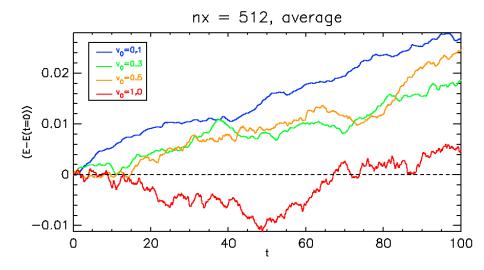
Binning of $E_{\rm kin}$ for $n_{\rm x}=512$:



Sets of 5×50 particles and **average** for different n_x :



Runs with $b_{0,z}$: averages for different initial speeds:



Expectation and findings

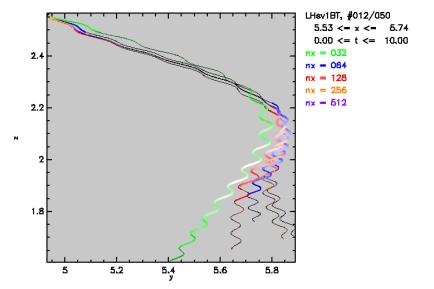
- The expectation for E_{kin} could have been:
 - the averages show at least some trend regarding the grid resolution
 - ightarrow formulation of transport parameters (e.g. a diffusion coefficient) or even of an external force

But:

- spread around each average is large compared to the differences between the averages for different cases
- no trend or systematics visible so far
- reason could be some kind of "chaotic behaviour" of the particles:

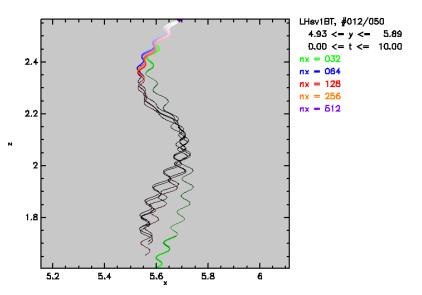
Particle trajectories

One particle (x=const.) for different resolutions, reduction 1:



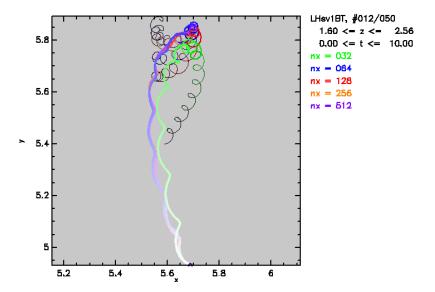
Particle trajectories

One particle (y=const.) for different resolutions, reduction 1:



Particle trajectories

One particle (z=const.) for different resolutions, reduction 1:



Conclusions and outlook

- small differences in the background field may lead to large deviations in the *individual* trajectories during the time-evolution
- these, however, are not systematic, but rather randomly in nature
- these, however, compensate essentially in the average
- do even higher grid resolutions help...?
- do even more particles help...?

Backup slides

MHD equations

Set of resistive MHD equations:

$$\frac{\partial \rho}{\partial t} = -\vec{\nabla} \cdot (\rho \vec{u})$$

$$\frac{\partial (\rho \vec{u})}{\partial t} = -\vec{\nabla} \cdot (\rho \vec{u} \otimes \vec{u}) + \nu \rho \Delta \vec{u} - \vec{\nabla} \rho + \frac{1}{\mu_0} (\vec{\nabla} \times \vec{B}) \times \vec{B}$$

$$\frac{\partial \vec{B}}{\partial t} = \vec{\nabla} \times (\vec{u} \times \vec{B}) + \eta \Delta \vec{B}$$

$$\frac{\partial \rho}{\partial t} = -\vec{\nabla} \cdot (\rho \vec{u}) + (\gamma - 1) (-\rho \vec{\nabla} \cdot \vec{u} + \eta \vec{J}^2)$$

- ρ plasma mass density
- \vec{u} plasma flow velocity (with viscosity ν)
- \vec{B} magnetic field (with resistivity η)
- p plasma gas pressure (with adiabatic index γ)

MHD equations

Assume:

- constant mass density $ho=
 ho_0$
- divergence-free plasma flow: $\vec{\nabla} \cdot \vec{u} = 0$
- periodic boundary conditions

$$0 = 0$$

$$\frac{\partial \vec{u}}{\partial t} = -\left(\vec{u} \cdot \vec{\nabla}\right) \vec{u} + \frac{1}{\mu_0 \rho} \left(\vec{B} \cdot \vec{\nabla}\right) \vec{B} + \nu \Delta \vec{u} - \frac{1}{\rho} \vec{\nabla} \underbrace{\left(\rho + \frac{\vec{B}^2}{2\mu_0}\right)}_{\rho_{\text{tot}}}$$

$$\frac{\partial \vec{B}}{\partial t} = -\left(\vec{u} \cdot \vec{\nabla}\right) \vec{B} + \left(\vec{B} \cdot \vec{\nabla}\right) \vec{u} + \eta \Delta \vec{B}$$

$$\Delta \rho_{\text{tot}} = -\left(\vec{\nabla} \otimes \vec{u}\right) : \left(\vec{\nabla} \otimes \vec{u}\right)$$

(last equation:
$$\vec{\nabla} \cdot (\partial \vec{u}/\partial t) = 0$$
)

MHD equations

Define the Alfvén velocity

$$\vec{b} = \frac{1}{\sqrt{\mu_0 \rho}} \vec{B}.$$

The MHD equations reduce to:

$$\frac{\partial \vec{u}}{\partial t} = -\left(\vec{u} \cdot \vec{\nabla}\right) \vec{u} + \left(\vec{b} \cdot \vec{\nabla}\right) \vec{b} + \nu \Delta \vec{u} - \frac{1}{\rho} \vec{\nabla} p_{\text{tot}}$$

$$\frac{\partial \vec{b}}{\partial t} = -\left(\vec{u} \cdot \vec{\nabla}\right) \vec{b} + \left(\vec{b} \cdot \vec{\nabla}\right) \vec{u} + \eta \Delta \vec{b}$$

(with p_{tot} still to be inserted)

Fourier transformation

The MHD equations are solved in Fourier space with TURBO

$$\mathcal{F}[\vec{u}(\vec{r},t)] = \vec{U}(\vec{k},t) = \int \vec{u}(\vec{r},t)e^{-i\vec{k}\cdot\vec{r}}d^3\vec{r}$$

$$\mathcal{F}[\vec{b}(\vec{r},t)] = \vec{B}(\vec{k},t) = \int \vec{b}(\vec{r},t)e^{-i\vec{k}\cdot\vec{r}}d^3\vec{r}$$

- $\vec{\nabla} \cdot \vec{u} \rightarrow i\vec{k} \cdot \vec{U}, \ \vec{\nabla} \times \vec{b} \rightarrow i\vec{k} \times \vec{B}$
- but products such as $\mathcal{F}[\vec{u} \cdot \vec{b}]$ result in terms like (dealiasing!)

$$ik_{\beta}N_{\alpha\beta}^{\mathbf{u},b}(\vec{k}) = \sum_{\beta}\int ik_{\beta}\mathbf{u}_{\beta}(\vec{q})b_{\alpha}(\vec{k}-\vec{q})d^{3}\vec{q}$$

• the pressure can now easily computed as

$$P(\vec{k},t) = -\sum_{\beta,\gamma} \frac{k_{\gamma} k_{\beta}}{k^{2}} \left(N_{\gamma\beta}^{u,u}(\vec{k},t) - N_{\gamma\beta}^{b,b}(\vec{k},t) \right)$$

MHD equations in Fourier space

$$\frac{\partial U_{\alpha}(\vec{k},t)}{\partial t} = \sum_{\beta,\gamma} M_{\alpha\beta\gamma} \left(N_{\gamma\beta}^{u,u}(\vec{k},t) - N_{\gamma\beta}^{b,b}(\vec{k},t) \right) - \nu k^2 U_{\alpha}(\vec{k},t)
\frac{\partial B_{\alpha}(\vec{k},t)}{\partial t} = \sum_{\beta,\gamma} M_{\alpha\beta\gamma} \left(N_{\gamma\beta}^{u,b}(\vec{k},t) - N_{\gamma\beta}^{b,u}(\vec{k},t) \right) - \eta k^2 B_{\alpha}(\vec{k},t)$$

with the projection operators:

$$M_{\alpha\beta\gamma} = -\frac{i}{2} (k_{\beta} P_{\alpha\gamma} + k_{\gamma} P_{\alpha\beta})$$

$$P_{\alpha\zeta} = \delta_{\alpha\zeta} - \frac{k_{\alpha} k_{\zeta}}{k^{2}}$$

The time integration in TURBO is performed with a modified Williamson/Runge-Kutta scheme

Particle transport in MHD fields

The TURBO particle code:

- propagates a set of charged particles with mass $m_{\rm p}$ and velocity $\vec{v}_{\rm p}(t)$, resulting in trajectories $\vec{r}_{\rm p}(t)$
- the initial values are $\vec{r}_{\mathrm{p},0}$ and $\vec{v}_{\mathrm{p},0}$ at time t=0:

$$\vec{r}_{\rm p,0}$$
: two cases:

all particles at the same place or randomly distributed

 $ec{v}_{\mathrm{p},0}$: random direction with same speed v_0

$$p \in \{1,\ldots,N_p\}$$

- the MHD fields are frozen in time, but TURBO also allows to simulate the evolutions of both fields and particles
- Runge-Kutta scheme with spline-interpolation of the MHD fields and control of the time-step

Postprocessing with binning or averaging over the set of particles

Code validation: energy conservation

Equation of motion (with: $\alpha = \Omega t_{\rm A} = \frac{q}{m_{\rm D}} b \frac{L}{v_{\rm A}}$):

$$\frac{d\vec{v}_{\rm p}}{dt} = \alpha \left(\vec{e} + \vec{v}_{\rm p} \times \vec{b} \right), \qquad \vec{e} = \underbrace{-\vec{\nabla}\varphi}_{\vec{e}_{\rm nsl}} \underbrace{-\frac{\partial \vec{a}}{\partial t}}_{\vec{e}_{\rm nsl}}$$

Kinetic energy:

$$\int \vec{v}_{\rm p} \cdot \frac{d\vec{v}_{\rm p}}{dt} dt = \alpha \int (\vec{e} \cdot \vec{v}_{\rm p}) dt = \alpha \int \left(\left(-\vec{\nabla} \varphi - \frac{\partial \vec{a}}{\partial t} \right) \cdot \vec{v}_{\rm p} \right) dt,$$

so that

$$\frac{1}{2}\vec{v}_{\mathrm{p}}(t_{2})^{2} - \frac{1}{2}\vec{v}_{\mathrm{p}}(t_{1})^{2} = -\alpha \left(\varphi\left(r_{\mathrm{p}}(t_{2})\right) - \varphi\left(r_{\mathrm{p}}(t_{1})\right)\right) - \alpha \left(\underbrace{\int_{t_{1}}^{t_{2}} \left(\vec{e}_{\mathrm{sol}} \cdot \vec{v}_{\mathrm{p}}\right) dt}_{M(t_{1}, t_{2})}\right)$$

Code validation: energy conservation

Comparison of different contributions ($\alpha = 1$, $t_2 = t$, $t_1 = 0$):

