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Topic

Topic: Transport of charged particles in turbulent MHD fields

MHD: The MHD equations are solved in wavenumber-space
(via Fourier transformation)

Focus: Contribution of high wavenumbers in this fields to the
particle transport:

highly resolved computations are costly regarding
time, memory and disk space:
high wave-numbers: fine structures on top of
“averaged” structure
idea: use lower resolution and replace
high-wavenumber contributions by transport
parameters such as an external force
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Reduction of Fourier modes

Representation of a fine structure by superposition of Fourier modes:
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Reduction of Fourier modes

Fourier transformation in 1D with N grid points:

f (xα) =
N∑
β=1

F (kβ)e ixαkβ , 1 ≤ α ≤ N

N determines:

the number of modes to be summed up

the grid resolution of each mode, β, in space: x1, . . . , xα, . . . , xN

→ reducing the number of modes reduces also the grid resolution

But, there is a second way to reduce the number of modes:

reduction 1: reduce N to N0 < N and, thus, also the grid resolution (↑)
reduction 2: keep N, but set F (kβ) = 0 for β ≥ N0

→ same high resolution∗ with less modes

∗drawback: time, memory requirements etc. also remain the same
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Reduction of Fourier modes

Taking the resolution into account, reduction 1 actually gives:
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Application to MHD: full field (nx = 512)

Magnetic field: real and wavenumber spaces: ~b(~r , t) =
∑

|~k|<256

~B(~k , t)e i
~k·~r :

⇔

⇔

X
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Application to MHD: full field (nx = 512)

Magnetic field: real and wavenumber spaces: ~b(~r , t) =
∑

|~k|<256

~B(~k , t)e i
~k·~r :

⇔
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Application to MHD: reduction 1 (nx = 32)

Reduce resolution, cut off all |~k | ≥ 16: ~b(~r , t) =
∑
|~k|<16

~B(~k, t)e i
~k·~r :

⇔

⇔

X
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Application to MHD: reduction 2 (nx = 32)

Keep resolution, but filter: ~b(~r , t) =
∑

|~k|<256

Θ(|~k | < 16)~B(~k , t)e i
~k·~r :

⇔

⇔

Θ: Heaviside function: Θ = 1 for |~k | < 16, Θ = 0 for |~k | ≥ 16
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Comparison of reductions 1 and 2

reduction 2 works as “high-order spline” interpolation of reduction 1
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Comparison of nx = 32 and nx = 128 for reduction 1

nx = 128 catches more fine structures, rather than to interpolate nx = 32
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Spectra of the magnetic field (normalised)
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(reduced) MHD equations

Take a fluid picuture rather than a kinetic approach and assume:

constant mass density ρ = ρ0

divergence-free plasma flow: ~∇ · ~u = 0

periodic boundary conditions

The MHD equations read for this case:

∂~u

∂t
= −

(
~u · ~∇

)
~u +

(
~b · ~∇

)
~b + ν∆~u − 1

ρ
~∇ptot

∂~b

∂t
= −

(
~u · ~∇

)
~b +

(
~b · ~∇

)
~u + η∆~b

fluid velocity ~u

magnetic field ~B → Alfvén velocity ~b = 1√
µ0ρ

~B

viscosity ν and resistivity η

total (gas plus magnetic) pressure ptot
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Fourier transformation

The MHD equations are solved in Fourier space (sum over grid indices):

~U(~k, t) =
∑
~r

~u(~r , t)e−i
~k·~r

~B(~k, t) =
∑
~r

~b(~r , t)e−i
~k·~r

(operators reduce: ~∇ · ~u → i~k · ~U or ~∇× ~b → i~k × ~B)

→ Solve (with ptot being set into the first equation)

∂Uα(~k, t)

∂t
= . . .

∂Bα(~k, t)

∂t
= . . .

with TURBO. The time integration is performed with a modified
Williamson/Runge-Kutta scheme
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~B(~r) (nx = 512)
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~B(~r) (nx = 512, reduced (1) to nx = 256)
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~B(~r) (nx = 512, reduced (1) to nx = 128)
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~B(~r) (nx = 512, reduced (1) to nx = 64)



Topic Introduction MHD equations MHD fields Applications Conclusions Backup slides 1 Backup slides 2

~B(~r) (nx = 512, reduced (1) to nx = 32)
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~B(~r) (nx = 512, reduced (2) to nx = 32)
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~B(~r) (nx = 512, reduced (2) to nx = 64)



Topic Introduction MHD equations MHD fields Applications Conclusions Backup slides 1 Backup slides 2

~B(~r) (nx = 512, reduced (2) to nx = 128)
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~B(~r) (nx = 512, reduced (2) to nx = 256)
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~B(~r) (nx = 512)
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~B(~r): comparisons for nx = 32

nearest neighbour (nx = 32) linear interpolation (nx = 32→ 512)

“Fourier interpolation” (nx = 32512) full field (nx = 512)
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Particle transport in MHD fields

The TURBO particle code:

propagates a set of charged particles with mass mp and velocity
~vp(t), resulting in trajectories ~rp(t)

the initial values are ~rp,0 and ~vp,0 at time t = 0:

~rp,0: two cases:

all particles at the same place or randomly distributed

~vp,0: random direction with same speed v0

p ∈ {1, . . . ,Np}
the MHD fields are frozen in time, but TURBO also allows to
simulate the evolutions of both fields and particles

Runge-Kutta scheme with spline-interpolation of the MHD fields
and control of the time-step

Code validation: energy conservation
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Particle trajectories

Sample trajectories with no background magnetic field:

(colour = speed, random starting points with v0 = 0.5)
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Particle trajectories

Sample trajectories with a background magnetic field, b0,z:

(colour = speed, random starting points with v0 = 0.5)



Topic Introduction MHD equations MHD fields Applications Conclusions Backup slides 1 Backup slides 2

Particle trajectories

Early time, trajectories for different resolutions, same starting point:

(green: linear interpolation, else: 6-point splines)
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Particle trajectories

Early time, trajectories for different resolutions, random starting points:

(green: linear interpolation, else: 6-point splines)
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Kinetic energy

Averaged kinetic energy for different resolutions and reduction 1:
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Kinetic energy

Averaged kinetic energy for different resolutions and reduction 2:
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Kinetic energy

Averaged kinetic energy for different resolutions and both reductions:
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Kinetic energy

Binning of Ekin for nx = 512:
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Kinetic energy

Sets of 5× 50 particles and average for different nx:
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Kinetic energy

Runs with b0,z: averages for different initial speeds:
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Expectation and findings

The expectation for Ekin could have been:

the averages show at least some trend regarding the grid resolution
→ formulation of transport parameters (e.g. a diffusion coefficient) or

even of an external force

But:

spread around each average is large compared to the differences
between the averages for different cases
no trend or systematics visible so far
reason could be some kind of “chaotic behaviour” of the particles:
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Particle trajectories

One particle (x=const.) for different resolutions, reduction 1:
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Particle trajectories

One particle (y=const.) for different resolutions, reduction 1:
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Particle trajectories

One particle (z=const.) for different resolutions, reduction 1:
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Conclusions and outlook

small differences in the background field may lead to large
deviations in the individual trajectories during the time-evolution

these, however, are not systematic, but rather randomly in nature

these, however, compensate essentially in the average

do even higher grid resolutions help...?

do even more particles help...?
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Backup slides
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MHD equations

Set of resistive MHD equations:

∂ρ

∂t
= −~∇ · (ρ~u)

∂(ρ~u)

∂t
= −~∇ · (ρ~u ⊗ ~u) + νρ∆~u − ~∇p +

1

µ0

(
~∇× ~B

)
× ~B

∂ ~B

∂t
= ~∇×

(
~u × ~B

)
+ η∆~B

∂p

∂t
= −~∇ · (p~u) + (γ − 1)

(
−p~∇ · ~u + η~ 2

)

ρ plasma mass density

~u plasma flow velocity (with viscosity ν)
~B magnetic field (with resistivity η)

p plasma gas pressure (with adiabatic index γ)
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MHD equations

Assume:

constant mass density ρ = ρ0

divergence-free plasma flow: ~∇ · ~u = 0

periodic boundary conditions

0 = 0

∂~u

∂t
= −

(
~u · ~∇

)
~u +

1

µ0ρ

(
~B · ~∇

)
~B + ν∆~u − 1

ρ
~∇

(
p +

~B2

2µ0

)
︸ ︷︷ ︸

ptot
∂ ~B

∂t
= −

(
~u · ~∇

)
~B +

(
~B · ~∇

)
~u + η∆~B

∆ptot = −
(
~∇⊗ ~u

)
:
(
~∇⊗ ~u

)
(last equation: ~∇ · (∂~u/∂t) = 0)
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MHD equations

Define the Alfvén velocity

~b =
1
√
µ0ρ

~B.

The MHD equations reduce to:

∂~u

∂t
= −

(
~u · ~∇

)
~u +

(
~b · ~∇

)
~b + ν∆~u − 1

ρ
~∇ptot

∂~b

∂t
= −

(
~u · ~∇

)
~b +

(
~b · ~∇

)
~u + η∆~b

(with ptot still to be inserted)
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Fourier transformation

The MHD equations are solved in Fourier space with TURBO

F [~u(~r , t)] = ~U(~k, t) =

∫
~u(~r , t)e−i

~k·~rd3~r

F [~b(~r , t)] = ~B(~k, t) =

∫
~b(~r , t)e−i

~k·~rd3~r

~∇ · ~u → i~k · ~U, ~∇× ~b → i~k × ~B

but products such as F [~u · ~b] result in terms like (dealiasing!)

ikβN
u,b
αβ (~k) =

∑
β

∫
ikβuβ(~q)bα(~k − ~q)d3~q

the pressure can now easily computed as

P(~k, t) = −
∑
β,γ

kγkβ
k2

(
Nu,u
γβ (~k , t)− Nb,b

γβ (~k , t)
)
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MHD equations in Fourier space

∂Uα(~k, t)

∂t
=

∑
β,γ

Mαβγ

(
Nu,u
γβ (~k, t)− Nb,b

γβ (~k , t)
)
− νk2Uα(~k, t)

∂Bα(~k, t)

∂t
=

∑
β,γ

Mαβγ

(
Nu,b
γβ (~k, t)− Nb,u

γβ (~k , t)
)
− ηk2Bα(~k, t)

with the projection operators:

Mαβγ = − i

2
(kβPαγ + kγPαβ)

Pαζ = δαζ −
kαkζ
k2

The time integration in TURBO is performed with a modified
Williamson/Runge-Kutta scheme
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Particle transport in MHD fields

The TURBO particle code:

propagates a set of charged particles with mass mp and velocity
~vp(t), resulting in trajectories ~rp(t)

the initial values are ~rp,0 and ~vp,0 at time t = 0:

~rp,0: two cases:

all particles at the same place or randomly distributed

~vp,0: random direction with same speed v0

p ∈ {1, . . . ,Np}
the MHD fields are frozen in time, but TURBO also allows to
simulate the evolutions of both fields and particles

Runge-Kutta scheme with spline-interpolation of the MHD fields
and control of the time-step

Postprocessing with binning or averaging over the set of particles
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Code validation: energy conservation

Equation of motion (with: α = ΩtA = q
mp

b L
vA

):

d~vp
dt

= α
(
~e + ~vp × ~b

)
, ~e = −~∇ϕ︸ ︷︷ ︸

~ensl

−∂
~a

∂t︸ ︷︷ ︸
~esol

Kinetic energy:∫
~vp ·

d~vp
dt

dt = α

∫
(~e · ~vp) dt = α

∫ ((
−~∇ϕ− ∂~a

∂t

)
· ~vp
)
dt,

so that

1

2
~vp(t2)2 − 1

2
~vp(t1)2 = −α

(
ϕ
(
rp(t2)

)
− ϕ

(
rp(t1)

))
−α

( t2∫
t1

(~esol · ~vp) dt

)
︸ ︷︷ ︸

M(t1,t2)
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Code validation: energy conservation

Comparison of different contributions (α = 1, t2 = t, t1 = 0):
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