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Ideal MHD configurations

e Interested in any time-dependent configuration of density,
entropy, velocity and magnetic field in (p(r, t), s(r, t), v(r, t), B(r, t))
that obey:
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Ideal MHD configurations

e Interested in any time-dependent configuration of density,
entropy, velocity and magnetic field in (p(r, t), s(r, t), v(r, t), B(r, t))
that obey:

= passive entropy advection (% +v-V)s=0

= mass conservation $p= —pV - v

= magnetic flux conservation 28 = V x (v x B)

= Equation of motion (EOM), including (self-)gravity
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Mappings: trajectories through space-time

-

worldline
( e map in fourspace: (a, t) — (r(a,t),)
Projected trajectory = connects original fluid parcel position

é}J to present position
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Mappings: trajectories through space-time

t worldline
( e map in fourspace: (a, t) — (r(a,t),)
Projected trajectory = connects original fluid parcel position
to present position
= = at fixed t, projected 3D
L x time-parametrized trajectory has tangent
/ vector
or

a(a, f)=:v(a,t)
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Suppose we are given the mapping a, together with initial
(f = 0) density, entropy and magnetic field variation

_ o

= geometric deformation info in tensor Fj’ = 34

= its determinant F relates to compression as £ 9% =V - v

(and incompressible flows treat F like a tracer, as entropy)
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e Hence, formally we have the full time-evolution of density,
entropy and magnetic field at all times when given the mapping,
since

= p(a, i) = F'(a t)p(a,0)
= s(a,ty) = s(a,0)
= Bf(a,t;) = F'(a,t;)F/(a, t;)B/(a, 0)
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e Hence, formally we have the full time-evolution of density,
entropy and magnetic field at all times when given the mapping,
since

= p(a, i) = F'(a t)p(a,0)
= s(a,ty) = s(a,0)
= Bf(a,t;) = F'(a,t;)F/(a, t;)B/(a, 0)
e ideal MHD: mass/entropy/magnetic field behave geometrically

= ideal: the collection of all trajectories does not depend on
the history of the flow, and everything is time-reversible!
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Energy considerations

o ideal gas with internal specific energy e*(T) = g% (for N
degrees of freedom per particle)

= thermodynamics rewrites e*(s, p~') [in terms of entropy
and specific volume]
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Energy considerations

e ideal gas with internal specific energy e*(T) = %SBT; (for N
degrees of freedom per particle)
= thermodynamics rewrites e*(s, p~') [in terms of entropy
and specific volume]

o introduce e = e*(s(a),p~") + va/2 [Alivén speed v4 = B

VHop

= then energy per unit mass e(s, p~', B?) obeys

p(8t+v~V)e:EI': Vv
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Energy considerations

e ideal gas with internal specific energy e*(T) = %SB—,J; (for N
degrees of freedom per particle)
= thermodynamics rewrites e*(s, p~') [in terms of entropy
and specific volume]

o introduce e = e*(s(a),p~") + va/2 [Alivén speed v4 = B

VHop

= then energy per unit mass e(s, p~', B?) obeys
p(Ot+Vv-V)e= T: W

where we find the MHD stress tensor

_ 2\
B, ),
o 2p0
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Newton’s law
e to obtain EOM, solve stationary action principle

= take Lagrangian: .& = p (1v? — 1®jy — dey — €)
= least action principle § [ [ Zd%rdt = 0
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Newton’s law

e to obtain EOM, solve stationary action principle
= take Lagrangian: . = p (32 — 1®jpt — Pyt — €)
= least action principle § [ [ Zd%rdt = 0
= vary over all mappings r(a, t), so Euler-Lagrange gives
007 0 0% 0%

- - + e - .
ari ori
ot 0% oa 367;. or'
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Newton’s law

e to obtain EOM, solve stationary action principle
= take Lagrangian: . = p (32 — 1®jpt — Pyt — €)
= least action principle § [ [ Zd%rdt = 0
= vary over all mappings r(a, t), so Euler-Lagrange gives
007 0 0% 0%

- - + —_ - .
ari ari
ot 0% oa 367;. or'

= ...and after quite some algebra, one finds Newton’s law

dv .
pogp = —VP+ix B — pV®ext — pVOin
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e this latter findings states that if we were given all possible
mappings, we would be able to select the one that is physically
relevant, namely the one that mimimizes the difference between
kinetic and potential energy, since this is the mapping that obey’s
Newton’s law
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e this latter findings states that if we were given all possible
mappings, we would be able to select the one that is physically
relevant, namely the one that mimimizes the difference between
kinetic and potential energy, since this is the mapping that obey’s
Newton’s law

= we will now use the same idea to link two ‘close’ solutions
which start of with same density, entropy and magnetic field
initially, and connect via Lagrangian displacement function

&(a t)=r(a,t)—r(a,ib)

Rony Keppens (KU Leuven) Linear MHD stability CHARM@ROB 2017 8/18



e if we compare on the spot (Eulerian) 6f(r, t) = f'(r, t) — f(r, t)
and linearize, we have
Sf(r,t) = F/(r, 1) — f(r,£) — &(r, 1) - VE(r, 1) + O(&?)
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e if we compare on the spot (Eulerian) of(r,t) = f'(r, t) — f(r, t)
and linearize, we have
Sf(r,t) = F/(r, 1) — f(r,£) — &(r, 1) - VE(r, 1) + O(&?)

= yields following for linearized Eulerian flow quantities
V=0 +V-VE—(£- V)V
op ==V - (p€)
0s=—-£-Vs
B=Vx(&xB).

= these turn out to obey linearized MHD equations
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Linearized field theory

e to get linearized EOM, consider the action that evaluates the
Lagrangian density for the displaced flow, hence minimize

V/2 1 / / / / /(! 34/
?—éq)mt— ext — € (r7t)p(r7t)d rat
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Linearized field theory

e to getlinearized EOM, consider the action that evaluates the
Lagrangian density for the displaced flow, hence minimize

V/2 1 / / / / /(! 34/
?—éq)im_ ext — € (r7t)p(r7t)d rat

= rewrite all terms in powers of £ (and its spatial derivatives)
and use Euler-Lagrange by vary £, so compute

00 00% 0%

_ _ _ _
¢l ] 0€ i
81‘3875[ or: 387% 0¢

0

= zeroth order terms are original EOM for unperturbed flow
= first order terms yield the linearized EOM
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e endresult yields

oo =) = v[(0-1p+ o) Vg
VeV ( & [p+ ] v-£)
HZO(B'V”( (vV-©)B]
VB ((B-V)¢)
—p (& V)V (Pext + Pint) — pV Pt ¢
= here 6®jpe(r)=— [ Glfpxl X is self-gravity perturbation
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e main observations are:

= operator ¥(&) turns out to be self-adjoint (w.r.t. inner
product (n, &) = [ p(n* - £€) dV, and this while it is an operator
taken from an arbitrary time-evolving MHD state
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e main observations are:

= operator ¥(&) turns out to be self-adjoint (w.r.t. inner
product (n, &) = [ p(n* - £€) dV, and this while it is an operator
taken from an arbitrary time-evolving MHD state

= at every time in a nonlinear MHD evolution: can construct
a (different) operator ¢ which is self-adjoint
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e main observations are:

= operator ¥(&) turns out to be self-adjoint (w.r.t. inner
product (n, &) = [ p(n* - £€) dV, and this while it is an operator
taken from an arbitrary time-evolving MHD state

= at every time in a nonlinear MHD evolution: can construct
a (different) operator ¢ which is self-adjoint

= note that written as previously, ¢ relates to
(p(r, 1), p(r, t),B(r, 1)), no explicit occurence of v

= this operator quantifies acceleration
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e main observations are:

= operator ¥(&) turns out to be self-adjoint (w.r.t. inner
product (n, &) = [ p(n* - £€) dV, and this while it is an operator
taken from an arbitrary time-evolving MHD state

= at every time in a nonlinear MHD evolution: can construct
a (different) operator ¢ which is self-adjoint

= note that written as previously, ¢ relates to
(p(r, 1), p(r, t),B(r, 1)), no explicit occurence of v

= this operator quantifies acceleration

e all this is known since 1962 (Cotsaftis/Newcomb, without
gravity) and 1967 (Lynden-Bell & Ostriker, for rotating,
unmagnetized with self-gravity)
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e operator similar to the one introduced by Frieman and
Rotenberg in 1960, for describing perturbation about stationary
equilibria, where they wrote

0 52
Gra(¢) —20v -V 0e 5 5 =
= one can show that
G
91g) = “7E 4 (v v

Rony Keppens (KU Leuven) Linear MHD stability CHARM@ROB 2017 13/18



MHD wave signals

e homogeneous plasma: slow, Alfvén, fast waves, stable!

= the phase speed diagrams quantify for every angle ¢
between k and B how far a plane wave can travel in fixed time

= how does this modify when self-gravity is included?
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e Chandrashekar & Fermi (1953); Strittmatter (1966)
= static uniform, magnetized medium, WITH self-gravity
= adopts Jeans swindle (is NOT a real equilibrium .. .)
e usual analysis exp(i (k - r — wt)) gives dispersion relation
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e Chandrashekar & Fermi (1953); Strittmatter (1966)
= static uniform, magnetized medium, WITH self-gravity
= adopts Jeans swindle (is NOT a real equilibrium .. .)

e usual analysis exp(i (k - r — wt)) gives dispersion relation

(k:B)?

= Alfvén wave w? = w? = Y

= slow/fast pair from

4 2 2\, 2.2 (k'B)222
wh— (Ve +vi)wk 4+ ——vikc=0
(s A) Liop s

= here yp/p — 4392 = v3(k?)
e we now show the phase speed diagram, for varying k
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e strong field case
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e SELF-GRAVITY, short wavelength below A, i.€. kK > Kt
e Jeans length: gravity wins from compression

[y
)\crit: Z;ppz

= fast phase speed isotropic Alfvén, slow marginal
e SELF-GRAVITY, wavelength ABOVE Ay, i.€. k < Kgit

= unstable slow, fast modes very anisotropic (stable)

= slow less angle dependent growth for wavelengths

Va+Vi(k*) =0

= maximal growth for wavevectors parallel to B
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e all details (and many more references) in Phys. of Plasmas 23,
122117 (2016) [plus erratum PoP 24, 029901 (2017)]

= work extended from master thesis Thibaut Demaerel
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