Multi-domain analysis of the microlensing survey data

Yogesh Joshi

Aryabhatta Research Institute of Observational Sciences (ARIES), India

Royal Observatory of Belgium, Brussels

12 October 2017

Outline of the Talk :

A brief introduction of gravitational lensing and microlensing

Nainital Microlensing Survey: Data acquisition and Reduction pipeline

Results of the Nainital Microlensing Survey

What is gravitational lensing

When a (foreground) massive object passes very close to line of sight of a (background) source, the gravitational field of foreground object forces the light of background source to deviate its path. Foreground object thus acts like a lens and phenomenon is called gravitational lensing.

Yogesh C Joshi

Gravitational microlensing

When stars in nearby region like Galactic bulge, Magellanic Clouds or M3I act as lenses, the deflection angle is a fraction of a milliarcsec. This is termed gravitational microlensing.

Microlensing event has following characteristics: I. Shape of the light curve is symmetric around peak.
2.Achromatic phenomenon.
3. Does not repeat during $3-4$ years observation

If we monitor a large number of resolved stars over a fairly long period of time then we may detect few of them.

Nainital Microlensing Survey

Motivation: Starting such survey in India

Indo-French collaborative program
Keeping the target in accordance with AGAPE collaboration
Difficult journey ahead with limited facilities!

Nainital Microlesning Survey: Data Aquisation

\rightarrow Telescope: 104-cm Sampurnanand Telescope, Nainital
\rightarrow CCD's used: $1 \mathrm{~K} \times 1 \mathrm{~K}\left(\right.$ FoV $\left.\sim 6^{\prime} \times 6^{\prime}\right)$ and $2 \mathrm{~K} \times 2 \mathrm{~K}\left(\right.$ FoV $\left.\sim 13^{\prime} \times 13^{\prime}\right)$
\rightarrow Central coordinates of the target field $=0^{h} 43^{m} 38^{s}, \delta=+41^{\circ} 09^{\prime} .1$
\rightarrow Filters used: Cousin $R(0.653 \mu)$ and $I(0.789 \mu)$
\rightarrow Duration: 1998-1999 to 2001-2002 observing seasons (Oct.-Jan.)
\rightarrow Total observed nights: 141 (133 in $R \& 116$ in I)
\rightarrow Exposure time per night: $\leq 40 \mathrm{~min}$ in R and $\leq 60 \mathrm{~min}$ in I
\rightarrow Average seeing: ~ 2.2 arcsec

Target field for Nainital Microlesning Survey

Yogesh C Joshi

Problem with photometric analysis

\rightarrow shape of the star
seeing effect
\rightarrow large sky background
\rightarrow variable PSF
\rightarrow surrounded in crowded region

Figure 3.5: The $13^{\prime} \times 13^{\prime}$ target field in the direction of M31 reproduced from a 20 minute exposure in R band on $2 \mathrm{k} \times 2 \mathrm{k}$ CCD. The small rectangle shown in the image denotes $6^{\prime} \times 6^{\prime}$ field which was monitored using $1 \mathrm{k} \times 1 \mathrm{k}$ CCD. East and North directions are shown in the image.

Yogesh C Joshi

Pixel Method and basic principle

Here we look for the flux variation of each pixel (or superpixel) of the CCD detector rather monitoring individual stars. In a CCD pixel, we get

$$
F=F_{*}+F_{n e i g h b o u r s}+F_{\text {sky }}
$$

Suppose the flux of target source F_{*} is amplified by a factor $A(t)$ at a particular time t, then the new flux of the pixel becomes

$$
F^{\prime}=A(t) \times F_{*}+F_{n e i g h b o u r s}+F_{\text {sky }}
$$

Therefore the change in the flux of the pixel is

$$
\Delta F=(A(t)-1) \times F_{*}
$$

Now if the target source shows a variation in flux with time, it will reflect in the ΔF and by plotting ΔF with the time, we can monitor the variation in the flux of the target source.

Alignment issues and Data analysis technique

To monitor the flux variations in any pixel, the images should be:
\Rightarrow Geometrically aligned: Each star should fall at the same pixel in all the frames.
\rightarrow Photometrically aligned: All the frames should have the same sky background irrespective of atmospheric conditions.
\rightarrow Seeing Corrected: Flux should be corrected for the seeing variation to reduce any unwanted fluctuation in the pixel light curve.

Discrimination of microlesning event from variable stars

Achromaticity:

Variable stars change in the temperature hence in colour. However, microlensing light curve is colour independent due to the gravitational origin of the lensing effect.

Symmetricity:

Most of variable stars show asymmetric flux variation with time. But, a microlensing light curve is normally symmetric in time around the maximum magnification.

Uniqueness:

There is a very rare possibility that a microlensing phenomenon occurs twice at a same place so one can reject all non-unique variations except when source or lens stars are well separated binary.

Hence, these properties of a light curve enable us to distinguish a microlensing event from the known types of intrinsic variability

Yogesh C Joshi

Detection of first microlesning candidate event

The positions of NMS-E1 shown by the circle. The left image shows no brightness at the pixel position while right image shows a amplified star at that position.

The light curves of NMS-E1 after subtracting the variable star contribution. A model microlensing fit is also drawn removing variable star contribution.

Yogesh C Joshi

Physical interpretation of the event

$R_{\max }=20.0 \pm 0.03, I_{\max }=18.8 \pm 0.03$
Applying distance modulus of M31, we get

$$
M_{R}=-5.12, M_{I}=-6.16,(R-I)_{0}=1.04
$$

Then what it could be?

- either source is a M1-type main sequence star
- or source is a giant star

If it is a main sequence star $\Rightarrow A_{\max }>10^{5}$ which is very unlikely.

We conclude that:

- Candidate NMS-E1 could be due to halo lensing
- If it is say ~ 22.5 mag then possible lens mass could be $M_{\text {lens }} \sim 0.5 M_{\odot}$

Variable stars as a bi-product of lensing survey

- The microlensing surveys have made it possible to discover and identify a large number of variable stars including Cepheid variables, RR Lyrae stars, long periodic variables (LPVs), etc.

The catalogues of variable stars compiled from such monitoring surveys are generally complete within limiting magnitude.

- One can determine precise pulsation period of the variables because of the long duration of survey and large number of observations.
- The large database allows the investigation of the metallicity effects in Cepheids, which have important implications on the cosmological distance ladder.

Detection of 26 Cepheids in the photometric survey

Table 4.2: A list of 26 Cepheids observed in the present study with their characteristic parameters. Star identification by KA L99, Tomaney \& Crotts (1996), MAG97 and Berkhuijsen et al. (1988) are prefixed with $\mathbb{K}, T C, M$ and \mathbb{B} respectively, in column 10 . The periorls of 13 Cepheids obtained in previous studies are given in the last column. The Cepheids which we discovered and classified are respectively marbed as \dagger and * in the first columm.

Star ID	"deg)	$\begin{gathered} s \\ \text { (deg) } \end{gathered}$	$\begin{gathered} \overline{\mathrm{R}} \\ \text { (magil } \end{gathered}$	$\begin{gathered} \bar{I} \\ (\operatorname{mog} \mathrm{E}) \end{gathered}$	$\begin{gathered} \Delta M \\ \text { manj } \\ \hline \end{gathered}$	Ferinad (diays")	Age (Myrs)	N	Other 115	Periced $(d a y s)$
V1	10.Eczi	41.1970	20.43	19.93	D-27	7.459 \# -	TE	125	I6 VEES	T-459
V2	10.84ED	41.1757	20.17	19.09	D.15	B. NCE \#Du003	60	124	TC 170	-
Vs-	10ssesa	41.2320	20.61	20.35	D23	B. 3 36 \#nu 04	65	120	TC 18	-
V4	10, coce	41.25015	20.38	19E4	D. 11.	9. 160 \#nuone	67	38	K V1219	9.173
VE	10.9T21	41.2128	20.ES	20.04	0.19	9. 700 ± 00005	64	92	K VRETY	9.791
VE-	10.8TT0	41.0001	20.43	19.76	D.15	10.383-10.009	62	93	TCTE	-
V7	1DEFT3E	41.2507	20.42	20.37	D.28	10. 500 ± 00004	61	125	TC16	-
v3	10.7200	41.1428	19.80	1985	D. 17	11.17 ± 0.01	59	955	M Es	25.0-5.0
vg-	10.ES94	41.2004	20.21	19.00	10.25	13.773 ± 0.006	52	129	TC20	-
V100	10,	41.1715	20.77	1984	10.48	14.420] \#0.00E	51	114	TC st	-
V11	10¢EE5	41.2439	195\%	18.87	D. 16	15-2E ± 0.01	49	945	I6 VEMEs	162t5
V12	10.9576	41.2227	20.84	20.05	0.32	13.48 ± 0.01	49	89	K V2zsa	1E4E4
V13	10.82ES	41.1386	1982	19.46	10.40	18.7E ± 0.01	43	94	M Ess	14.0\#2.3
V114	109019	41.2419	19.93	1985	12.28	15.90 ± 0.01	43	121	TC 194	-
V15	10915	41.25045	20.79	19.91	0.30	13.9E ± 0.01	43	125	TCO 198	-
V16	109TE	41.2348	20.25	19.74	0.40	16.3S ± 0.02	47	47	K V3193	16.345
V17	10.mosa	41.1SES	20.12	19.00	0.79	16.50 .10 .01	47	124	B 4614	-
V1E	10.06E5	41.2174	10.7	19.08	0211	17.77 ± 0.01	45:	91.	I6 viches	17.709
V19	10.9639	41.2374	1983	19.00	0.12	17.8510 .08	45	15	KC Vetsi	18.egy
V20-	10.geze	41.1510	19.20	18.98	D.3s	20.009 ± 0.01	42	545	TC 207	-
V21	10.ESTY	41.1514	19.74	1931	D. 39	21.44 ± 0.02	410	548	M 89	13.0\#2.6
v22+	10.serz	41.1071	20.01	19.15	0.29	30.59 ± 0.04	25	52	-	-
v2s	10.mas9	41.2379	19.75	18.92	D.34	23.78 ± 0.02	43	127	TC 30	-
V24 ${ }^{+}$	109002	41.1823	20.505	1957	0.25	35-12 40.010	310	121	-	-
v25	10.Eas	41.2475	18.80	18.54	Dill	45.ES $\triangle 0.08$	25	97	K VETE	43 ETi
v2s	10.8183	41-1E46	19.5	18.82	1023	Exar 40.08	22	124	K V164	56.116

P-L relation and distance of M31 galaxy

Using known LMC Cepheids, the standard Period-Luminosity relations are given as

$$
\begin{aligned}
M_{R} & =-2.94(\pm 0.09) \log P-1.58(\pm 0.04) \\
M_{I} & =-2.96(\pm 0.02) \log P-1.94(\pm 0.01)
\end{aligned}
$$

We derived a P-L relation using 24 Cepheids as

$$
\begin{aligned}
R & =-2.94 \log P+23.54(\pm 0.09) \\
I & =-2.96 \log P+23.02(\pm 0.07)
\end{aligned}
$$

Thus the apparent distance modulus is

$$
(m-M)_{R}=25.12 \pm 0.09, \quad(m-M)_{I}=24.96 \pm 0.07
$$

Correcting for the extinction, it gives us a true distance modulus of

$$
(m-M)_{0}=24.49 \pm 0.11 \equiv 790 \pm 45 k p c
$$

Yogesh C Joshi

Limitation of photometric technique in detection of faint Cepheids in M31

Most of the faint Cepheids towards M31 are 21-23 mag.
Using photometric technique they were not detected all the time

To draw a nice phase light curves, we need many detections at different phases

Hence we could detect only 26 Cepheids using photometric technique

However, we also used pixel method to identify faint low-period Cepheids in M31

Identification of faint Cepheids

R band Pixel Light Curve of 39 Low Period Cepheids in M31

Identification of faint Cepheids

I band Pixel Light Curve of 39 Low Period Cepheids in M31

Phase

Detection of Novae in M31

A 2 arcmin wide subset of two different R band images taken on two different nights. The left image shows no star at the position marked by a circle while right image shows a star (nova NMS-1) of R = 17.2 mag at that position.

A 2 arcmin wide subset of two different images taken on two different nights. Right image shows a star (nova NMS-2) of $\mathrm{R}=17.7$ mag at that position.

Detection of Novae in M31

Yogesh C Joshi

Detection of Eclipsing binary stars

Fig. 3 Folded R_{c} and I_{c} bands phase light curves for the W UMa binary.

Analysis of Eclipsing binaries

Detection of exotic objects- Hubble Sandage variable

Yogesh C Joshi

Summary of Nainital Microlesning Survey

1 microlensing candidate event was detected
26 bight Cepheids were detected using photometric technique
29 faint new Cepheids were detected using pixel technique
2 classical nova were detected
More than 330 variable stars including many eclipsing binaries were detected in the direction of M31 target field

Not all variable stars are analysed in detail.

Why this talk:

Research in Astron. Astrophys. 2017 Vol. X No. XX, 000-000 http://www.raa-journal.org http://www.iop.org/journals/raa

Research in Astronomy and Astrophysics

Long-term photometric study of a faint W UMa binary in the direction of M31

Y. C. Joshi ${ }^{1}$ and Rukmini J. ${ }^{2}$ *
${ }^{1}$ Aryabhatta Research Institute of Observational Sciences, Manora Peak, Nainital, India - 263002
${ }^{2}$ Center for Advanced Study in Astronomy, Osmania University, India
Received 15 June 2017; accepted 31 July 2017
Yogesh C Joshi

Future survey with 4-m ILMT

Yogesh C Joshi

Observatory

Arvabhatta Research Institute of Observational Sciences (ARIES)

- Maciewski et al., including Joshi, Y.C., 2013, A\&A, 551, 108

Exciting time for Astronomy in India :

Participation in Mega Projects: TMT, LIGO, SKA

Space missions: ASTROSAT, ADITYA

New Telescopes:
3.6m DOT, 4-m ILMT, 2-m NLST

Under planning:

Human Resource 8 to 10 m NLOT

Locations of Indian Optical Facilities.

 IAO, Hanle(Latitude : $32^{\circ} 46^{\prime} \mathrm{N}$, Longitude : $78^{\circ} 58^{\prime} \mathrm{E}$) Devasthal, Nainital (Latitude: ${29^{\circ}}^{\circ} 22^{\prime} \mathrm{N}$; Longitude: $79^{\circ} 41$ VBO, Kavalor

Longitudinal importance for time-critical and multi-site observationsIndia can fill the gap between Australian sky and the sky of Canary Island

