Hanle Echelle Spectrograph (HESP)

- Bench mounted High resolution echelle spectrograph fed by Optical Fiber
- Second generation instrument for HCT

The project is a technical collaboration between Indian Institute of Astrophysics (IIA), Bangalore and Industrial Research Limited, New Zealand where both partners work in close interaction

HESP specifications

- \checkmark Spectral resolution
 - \checkmark R = 30000 (unsliced fiber)
 - \checkmark R = 60000 (with image slicer)
- Continuous wavelength coverage: 350-1000nm in single exposure with 4Kx4K Detector format of 12mm square pixel
- ✓ Mechanical stability 200 m/s
- \checkmark Radial velocity accuracy 20m/s (ThAr reference mode)
- Total system Efficiency > 20% (including telescope and detector in the range 400-700nm)
- Double fiber mode to record the star and calibration/sky spectra simultaneously for high precision RV measurements
- \checkmark A minimum inter-order separation of 400 µm on the detector

Faintest limit ~12mag (@R=60000 S/N ~15)

HESP Module

Cassegrain Unit

- Attached to the side port of HCT instrument cube
 - Launching telscope beam into optical fiber
 - Auto guiding setup
 - Atmospheric Dspersion Corrector
 - Pihole mirror /Optical fiber (Science)
 - Calibration fiber
 - Alignment Optics
 - \succ Auto guiding camera

Calibration Unit

- Located in Spectrograph
 Laboratory
 - Feeds cassegrain unit with flux from calibration source (Th/Ar, Neon, Hallogen/Tungston)
 - Optical fiber (Calibration)
 - □ ND filter/Color Balancing filters
 - □ Fiber selector (00,01,10,11)

Spectrograph

- □ Input optics
- □ Image Slicer
- Collimator
- Chelle Graing
- Slit mirror

HESP Cassegrain Unit

Image scale at the pinhole mirror is 87mm per arcsecond

5

Fold Mirror

Entrance Port

Μ

Spot diagrams at F/9 telescope focus -

(BJ: 0.0139, -0.0139 (deg) (BJ: 0.0000, 0.0000 (deg) (BJ: 0.0000, 0.0000 (deg)		Seeing disk diameter (arcsecs)	Flux through 0.25 mm = 2.85 arcsec diameter pinhole
IMA: 4.389, -4.385 m. IMA: -4.388,), -4.385 m.	0.25	1.00
(BJ: 0.0139, 0.0139 (dea)	0.0139 (dep)	0.5	0.99
IMA: -0.000, 0.003 mm		0.75	0.97
		1.0	0.93
DA: 4.388, 4.390 m. DA: -4.389	9, 4.391 m	1.25	0.90
urface DA: Focal plane		1 4 2	0.00
Spot Diagram		1.43	0.86
1/10/2011 Units are µm. Airy Radius: 4.723 µm ield : 1 2 3 4 5 MS radius: 8.808 8.962 8.952 8.915 8.915 FC radius: 19.918 19.667 19.567 19.369 FFC	CT ADC 20110516 ZMX	1.5	0.83
ircle diam: 240 Reference : Centroid Co	onfiguration: All 12	1 75	0.75

- 12 zenith angles from 0 to 70 degrees are combined and overlaid in each spot diagram.
- The circle diameters are 0.25 mm (equal to the pinhole diameters) or 96% of a projected fibe diameter.

 \Box This is for the square 100 arcsecond field

0.75 Simulated image at the detector of guiding unit for 1.43" seeing

11 mag object

HESP Cassegrain Unit

HESP operating modes

- Alignment mode allows pinholes, calibration and
 science fibres to be precisely aligned.
- Object and Sky mode is for pure observation.
 - Object and Calibration mode is for simultaneous recording of object and calibration spectra for precision.
- Pure calibration mode is for calibration exposures between observations.
- Calibration fibre outputs will be at f/3.6.

Shutter behind Pinhole selects Fiber 00: Calib-Calib 01: Object-Calib / 10: Calib – Object 11: Object - Sky

HESP Pinhole - Fiber Coupling

HESP Calibration unit

✓ Wavelength calibration: Th/Ar, Neon

- ✓ Flat Fielding: Hallogen/Tungston
- ✓ Alignment : Laser

ND Filter : OD 4

✓ Calibration Unit

- Located in Spectrograph
 Laboratory
 - Feeds cassegrain unit with flux from calibration source
 - Optical fiber (Calibration)
 - □ ND filter/Color Balancing filters
 - □ Fiber selector (00,01,10,11)

HESP Image Slicer

- The pre-slicer optics convert the fibre outputs to be f/3.2 to f/75 for the slicer.
- Slicer and Fold Prisms
- Folding prisms are made separately and cemented to the Slicer prism.
- Overall length and width are of the order of ~13 mm.

□ Slit : *340x340mm for Hi Res/ 140x680mm Lo Res*

Efficiency: ~85%

-1.1824 Ray X Max

0.0001 Ray Y Max = 9.5990 Wavelength=

Footprint Diagram

9.5334

1.1990

% rays through = 99.96%

SlicerTestBed20110627.ZMX Configuration: All 2

Millimete:

26.0000

Scale:

7/07/2011 Surface 6: Ray X Min =

Ray Y Min = Max Radius=

Aperture Diameter: 24.0000

<u>Spectrograph optical</u> <u>Layout</u>

 Echelle grating : Blaze angle: 65deg (R2.15) Groove Frequency: 52.67l/mm Size: 220x420x74mm

> Collimator : F Ratio: 10.45 Beam size: 177mm Focal length : 1850mm

PrismsApex angle : 55degMaterial: BSL-7Y

 Camera
 Six Elements CM1.1 Ohara FPL51Y CM1.2 N-BAK2 schott CM1.3 OharaFPL51Y CM2.1 FSL-5Y Ohara CM3.1 BSL7Y Ohara CM4.1 FPL51Y
 Focal Ratio: 2.7
 Flat Fieldner

Spectrograph Integrated on Optical Bench

HESP Spectral Format/ Image Quality

Detector: 4K x 4K , 15mm square Pixel

HESP Detector

Figure 1. Wavelength map

The coating orientation has not been specified. The figure below gives a proposed orientation on the device. If alternate orientation is required (ie rotated 90 degrees) then this must be agreed at contract placement.

Y=0 = row-zero of CCD = connector-1 end of CCD. X=0- column-zero of CCD. Centre of device is X, Y = 2048, 2048 nominal.

The proposed coating orientation is with the red end at the X=0 side (ie near amplifiers E, H).

- 4kx4k E2V 231-84
- Custom AR graded
- Back illuminated
- Standard silicon device
- 15Micron pixel size
- 4-readouts
- IMHz, 50kHz- readout speed
- System gain-1.20,2.50 e-/ADU
- Read noise 3.8,4.2e-
- Fringing < 1% 900nm</p>

Detector QE

Slit to Focal Plane

Efficiency : 20% 450nm to 700nm

HESP Thermal Enclosure : Concept

Thermal Stability

Temperature stability obtained is +/- 0.05 deg C against the requirement of 0.5 deg C on the set point(+16 deg C) when the ambient temperature was varying between -8

Spectral format at the detector

1 1 11 1 1 1 1 111 111111 1 1 1 ٠ .

HESP observing modes

Scattered light in HESP

HESP data pipeline

hesp_createlist	Creates the [files.list] file which contains classification and information of each file
hesp_preproc	Creates [Master BIAS file] and does Overscan correction, Bias subtraction and optional Cosmic ray removal
hesp_trace	Traces the different orders from a (Star/Flat) file.
hesp_extract	Extracts the different orders from the Data files and creates an intermediate ec.fits file
hesp_calibrate	Uses a master calibration and identifies the orders and shifts to calibrate the data.
hesp_view	The front end for viewing the calibrated data. The tracing can be verified in this window the same time.

Tracing Interface

CEMP star using **HESP**

EXOplanet observations with HESP

New EMP stars with HESP

Binarity among EMP stars

