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1. IDEAL MHD 

Sooo what is MHD? 
certainly not magic 

 

equations of  gas dynamics              +                              Maxwell’s equations  

 Hydrodynamics                 +  



1. IDEAL MHD 

What about the “ideal” part?                     

 Assumptions: 

• characteristic time >> ion gyroperiod and mean free path time 

• characteristic scale >> ion gyroradius and mean free path length  

• plasma velocities are not relativistic  

• quasineutrality 

• all dissipative processes (finite viscosity, electrical resistivity, thermal 
conductivity) are neglected 



1. IDEAL MHD 

 Then… when is MHD useful? 

 

• describes macroscopic force balance, equilibria 
and dynamics on large scales 

• MHD – good predictor of plasma stability 

• systems described well by MHD:  

• solar wind, heliosphere, Earth’s magnetosphere 
(large scales) 

• neutron star magnetospheres 

• inertial range of plasma turbulence 



1. IDEAL MHD 

  

 When is MHD not useful? 

 

 

• when non-fluid or kinetic effects are important  

• the particle distribution functions are not 
Maxwellian (e.g. cosmic rays) 

• the plasma is weakly ionized 

• small scale plasmas 

Cosmic ray spectra. Credit: Hongbo Hu, 2009 



2. IDEAL MHD EQUATIONS 

• describe the motions of a perfectly conducting fluid interacting with a magnetic field
  

• conservative form:   
𝜕

𝜕𝑡
… + 𝛻 ∙ … = 0 ;    𝛻 ∙ 𝐁 = 0 (no magnetic monopoles)   

 

𝜕𝜌

𝜕𝑡
+ 𝛻 ∙ 𝜌𝐯 = 0 

𝜕(𝜌𝐯)

𝜕𝑡
+ 𝛻 ∙ 𝜌𝐯𝐯 + 𝑝 +

1

2
𝐵2 𝐈 − 𝐁𝐁 = 𝟎,       𝑝 = (𝛾 − 1)𝜌𝑒 

𝜕

𝜕𝑡

1

2
𝜌𝑣2 + 𝜌𝑒 +

1

2
𝐵2 + 𝛻 ∙

1

2
𝜌𝑣2 + 𝜌𝑒 + 𝑝 + 𝐵2 𝐯 − 𝐯 ∙ 𝐁𝐁 = 0 

𝜕𝐁

𝜕𝑡
+ 𝛻 ∙ 𝐯𝐁 − 𝐁𝐯 = 0       

Mass conservation 

Momentum equation 

Energy conservation 

Magnetic flux conservation  



2.1 MASS CONSERVATION 

 

 
𝜕𝜌

𝜕𝑡
+ 𝛻 ∙ 𝜌𝐯 = 0 

 
ρ = mass density   

v = flow velocity 

ρvS = mass flux passing  
through the surface 

Rate of increase of mass 
(density) in control volume 

Net influx of mass 

Input = Output + Accumulation,  

in our case with Accumulation = 0 



2.2 MOMENTUM EQUATION 

 
𝜕(𝜌𝐯)

𝜕𝑡
+ 𝛻 ∙ 𝜌𝐯𝐯 + 𝑝 +

1

2
𝐵2 𝐈 − 𝐁𝐁 = 𝟎 p  = plasma pressure 

𝐵2

2
 = magnetic pressure 

Time derivative of 
momentum density 

Total pressure 
(gradient) 

Magnetic 
tension  

Gradient of 
convective flux 
of momentum 

Stress tensor 

The magnetic tension force is directed radially 
inward with respect to magnetic field line 
curvature; it wants to straighten field lines 

Regions of high magnetic pressure 
exert a force towards regions of low 

magnetic pressure 

indicates 
isotropy 

𝐵 
𝐵 

Magnetic 
pressure force Magnetic 

tension force 



2.3 ENERGY CONSERVATION 

 
𝜕

𝜕𝑡

1

2
𝜌𝑣2 + 𝜌𝑒 +

1

2
𝐵2 + 𝛻 ∙

1

2
𝜌𝑣2 + 𝜌𝑒 + 𝑝 + 𝐵2 𝐯 − 𝐯 ∙ 𝐁𝐁 = 0 

Kinetic energy 
density 

Magnetic field 
energy density 

Flow of kinetic 
energy 

Internal energy 
density 

Energy flow Total energy density 

Potential energy density = 
𝑝

𝛾−1
+

1

2
𝐵2 

(expressed in primitive variables) 

Electromagnetic flow 
(a.k.a. Poynting vector) 

Flow of internal 
energy 

Work done on the plasma 
from the pressure gradient 

𝑝 = (𝛾 − 1)𝜌𝑒 
γ = adiabatic index 

e = internal energy   

 per unit mass 

𝑇ℎ𝑒 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑜𝑓 𝑎𝑛𝑦 𝑝𝑙𝑎𝑠𝑚𝑎 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑖𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 



2.4 MAGNETIC FLUX CONSERVATION, 
FROZEN-IN CONDITION 

 
𝜕𝐁

𝜕𝑡
+ 𝛻 ∙ 𝐯𝐁 − 𝐁𝐯 = 0 

Magnetic field 
time variation 

represents conversion of mechanical 
energy to electromagnetic induction 

1) 𝑇ℎ𝑒 𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑐 𝑓𝑙𝑢𝑥 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑎 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑚𝑜𝑣𝑖𝑛𝑔 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑝𝑙𝑎𝑠𝑚𝑎 𝑖𝑠 𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑒𝑑. 
2) 𝑀𝑎𝑔𝑛𝑒𝑡𝑖𝑐 𝑓𝑖𝑒𝑙𝑑 𝑙𝑖𝑛𝑒𝑠 𝑏𝑒ℎ𝑎𝑣𝑒 𝑎𝑠 𝑖𝑓 𝑡ℎ𝑒𝑦 𝑚𝑜𝑣𝑒 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑝𝑙𝑎𝑠𝑚𝑎. 
3) 𝑀𝑎𝑔𝑛𝑒𝑡𝑖𝑐 𝑡𝑜𝑝𝑜𝑙𝑜𝑔𝑦 𝑖𝑠 𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑒𝑑. 

Magnetic flux tube = cylindrical volume 
enclosed by the collection of field lines that 

intersect a closed curve 

 
𝑑

𝑑𝑡
 𝐁 ∙ 𝑑𝐒
𝑆

= 0 Frozen-in condition 



3. PLASMA β 

𝛽 =
𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒

𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑐 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒
=
2𝜇0𝑝𝑡ℎ
𝐵2

 

Both obey the frozen-in condition, the difference is which component is dominant 

𝛽 ≪ 1:magnetic field carries the plasma 𝛽 ≫ 1: plasma carries 𝐁 as it moves 

𝑝𝑡ℎ = 2𝑛𝐾𝑇;  𝑝𝑚𝑎𝑔 =
𝐵2

2𝜇0
 

Sketch of a sunspot with 
forming penumbra. 

Credits: Bourdin, 2017  



Plasma beta model over an active region. The plasma 
beta as a function of height is shown shaded for open 
and closed field lines originating between a sunspot of 
2500 G and a plage region of 150 G. 

Gary, 2001 

Computed dependencies of logarithms 
of the density ρ and the temperature T. 
Credit: Fedun, Shelyag and Erdélyi, 
2010 

Photosphere 

Cromosphere 

Corona Transition 
region 



4. ALFVÉN MACH NUMBER 

𝑀𝐴 =
𝑣

𝑣𝐴
=

𝑝𝑟𝑎𝑚
𝑝𝑚𝑎𝑔

 

basically, 𝑀𝐴
2 =

𝑘𝑖𝑛𝑒𝑡𝑖𝑐 𝑒𝑛𝑒𝑟𝑔𝑦

𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑐 𝑒𝑛𝑒𝑟𝑔𝑦
  

𝑣𝐴 =
𝐵

𝜇0𝜌
= 𝐴𝑙𝑓𝑣é𝑛 𝑠𝑝𝑒𝑒𝑑;   𝑝𝑟𝑎𝑚 =

𝜌𝑣𝑠𝑤
2

2
;  𝑝𝑚𝑎𝑔 =

𝐵2

2𝜇0
 

Plot of the Alfvén Mach number (top) and 

sunspot number (bottom) as a function of 

time through the solar cycle using 27 day 

averaged OMNI2 data. Zank et al., 2014 

𝑀𝐴 < 1: sub ‒ Alfvénic flow/speeds 𝑀𝐴 > 1: super ‒ Alfvénic flow/speeds 

Oooor this…  

that feels like…  

Low corona: low speeds, still strong 

magnetic field => sub-Alfvénic flows 

De Havilland Mosquito 



5. SINGLE PARTICLE MOTION IN EM FIELDS 

Lorentz force 

Not this guy. 

Definitely not. 



5. SINGLE PARTICLE MOTION IN EM FIELDS 

Simple case: E = 0  

𝑚
𝑑𝐯

𝑑𝑡
= 𝑞(𝐄 + 𝐯 × 𝐁) 

then 

Lorentz force 

𝑚
𝑑𝐯

𝑑𝑡
= 𝑞𝐯 × 𝐁 

Let’s assume: 𝐁 =
0
0
𝐵

     𝐯 =

𝑣𝑥
𝑣𝑦
𝑣𝑧

    then 

We calculate first and second 

derivatives of the speed and solve the 

differential equation system and voila!  

𝑣𝑥 = 𝐴1𝑐𝑜𝑠
𝑞𝐵

𝑚
𝑡 + 𝐵1𝑠𝑖𝑛

𝑞𝐵

𝑚
𝑡  

𝑣𝑦 = 𝐴2𝑐𝑜𝑠
𝑞𝐵

𝑚
𝑡 + 𝐵2𝑠𝑖𝑛

𝑞𝐵

𝑚
𝑡  

also 

𝑣𝑥 0 = 𝑣0 
𝑣𝑦 0 = 0 

𝑣𝑥 0 = 0 

and 
We define: 𝜔𝑐 =

𝑞𝐵

𝑚
  cyclotron frequency  

This guy. 



5. SINGLE PARTICLE MOTION IN EM FIELDS 

𝑚
𝑑𝐯

𝑑𝑡
= 𝑞(𝐄 + 𝐯 × 𝐁) 

Some 

mathematical 

magic… 

Solution:      
𝑣𝑥=𝑣0cos (𝜔𝑐𝑡)
𝑣𝑦=−𝑣0sin(𝜔𝑐𝑡)

   and   
𝑋= 

𝑣0
𝜔𝑐

 sin  (𝜔𝑐𝑡)

𝑌= 
𝑣0
𝜔𝑐 

𝑐𝑜𝑠 (𝜔𝑐𝑡)
    

gyroradius or cyclotron radius 

CIRCULAR MOTION! 

Right hand rule 

Make sure you don’t end up like this… 



5. SINGLE PARTICLE MOTION IN EM FIELDS 

𝑚
𝑑𝐯

𝑑𝑡
= 𝑞(𝐄 + 𝐯 × 𝐁) Lorentz force 

     Motion? 

Let’s consider             

𝐁 =
0
0
𝐵

     𝐯 =

𝑣𝑥
𝑣𝑦
𝑣𝑧

   

but the components of 

the initial velocity parallel 

and perpendicular to B 

are non zero.  

 

 

α = pitch angle 

along the magnetic 

field lines! 



5. SINGLE PARTICLE MOTION IN EM FIELDS 

Applications?      Countless!        

Particles trapped inside Earth’s magnetic 

field lines; magnetic mirroring 

Accelerators Bubble and cloud chambers 
Electrons inside magnetic flux ropes 

of ICMEs. Owens 2016 



5. SINGLE PARTICLE MOTION IN EM FIELDS 

𝑚
𝑑𝐯

𝑑𝑡
= 𝑞(𝐄 + 𝐯 × 𝐁) Lorentz force 

     Motion? 

      Let’s add also E perpendicular to B;  we make the substitution: 𝐯 = 𝛚 + 𝐄 × 𝐁 

  

⇒ 𝐄 × 𝐁 drift, with a speed: 

𝐯𝐃 =
𝐄 × 𝐁

𝐵2
 

⇒ 𝐄 × 𝐁 drift independent of particle mass, charge or speed! 

drift across the magnetic field lines 



5. SINGLE PARTICLE MOTION IN EM FIELDS 

𝑚
𝑑𝐯

𝑑𝑡
= 𝑞(𝐄 + 𝐯 × 𝐁) Lorentz force 

     Motion? 

  What about gravity?          

⇒ drift speed:  𝐯𝐃 =
1

𝑞

𝐅 × 𝐁

𝐵2
 𝑚

𝑑𝐯

𝑑𝑡
= 𝐅 + 𝑞 𝐯 × 𝐁 = 𝑞(

1

𝑞
𝐅 + 𝐯 × 𝐁) 

drift across the magnetic field lines, dependent on charge! 

Curvature drift 

important in this case! 



6. SHOCKS AND DISCONTINUITIES  

= surface separating two fluids (or gases) with 

different physical properties, in equilibrium 

Notation: 𝑓 = 𝑓1 − 𝑓2 

   indices “n” and “t” will denote the components of a vector  

   normal and tangential to the surface, and indices 1 and 2 the 

   different media upstream or downstream of the shock front 

“upstream” 
“downstream” 

Variables: ρ, 𝑣𝑛, 𝐯𝐭, p, 𝐵𝑛, 𝐁𝐭 ; the discontinuity/shock type is determined 

    by the variables that jump (vary) across the surface  

Types of discontinuities: 

1a. Contact 

1b. Tangential 

1c. Rotational → mass flows 

Types of shocks: 

2a. Slow 

2b. Fast 

2c. Intermediate 

Difference? 

𝑣𝑛 = 0 𝑣𝑛 ≠ 0 

no mass flow 
mass flows 

through 

boundary 



6.1 DISCONTINUITIES  

1a. Contact discontinuity 

= boundary between two media which have different densities and temperatures; no flow of mass across it  

𝐵𝑛 ≠ 0, field lines can cross the discontinuity 

Jumping:     𝜌 ≠ 0 

Continuous: 𝑣𝑛 = 0, 𝐯𝐭 = 0, 𝑝 = 0, 𝐵𝑛 = 0, 𝐁𝐭 = 0 

no mass flow across the surface 



6.1 DISCONTINUITIES  

1b. Tangential discontinuity 

- no mass flow, no magnetic flux across it   

𝐵𝑛 = 0, field lines do not cross the discontinuity; upstream and 

downstream magnetic field vectors are parallel to the shock plane 

Jumping:     𝜌 ≠ 0, 𝐯𝐭 ≠ 0, 𝑝 ≠ 0, 𝐁𝐭 ≠ 0 

Continuous: 𝑣𝑛 = 0, 𝐵𝑛 = 0, 𝒑 +
𝑩𝒕
𝟐

𝟐𝝁𝟎
= 0 

After Burlaga and Ness, 1969 
After Strauss et al., 2016 

(TD) 



6.1 DISCONTINUITIES  

1c. Rotational discontinuity 

= actually a particular case of intermediate shock, in which 𝜌 = 0; plasma 

flows across the surface   

All thermodynamic quantities are continuous across the shock, but the 

tangential components 𝐁𝐭 and 𝐯𝐭 can rotate (but same magnitude).  

Jumping:     𝐯𝐭 ≠ 0, 𝐁𝐭 ≠ 0 

Continuous: 𝜌 = 0, 𝑣𝑛 = 0, 𝑝 = 0, 𝐵𝑛 = 0 

Propagation speed = normal Alfvén speed = 
𝐵𝑛

𝜌𝜇0
 

Elenbaas et al., 2015 



6.2 SHOCKS  

= discontinuities across which there is a flux of mass; they are created when the plasma is moving with a 

speed higher than the information can propagate and encounters an obstacle.  

All MHD shocks have the property of coplanarity = downstream magnetic field lies in the plane defined by 

the upstream magnetic field and the shock normal 

Jumping:      𝜌 ≠ 0, 𝑣𝑛 ≠ 0, 𝑝 ≠ 0, 𝐯𝐭 ≠ 0, 𝐁𝐭 ≠ 0 

Continuous: 𝐵𝑛 = 0 

Remember Alfvén speed?    𝑣𝐴 =
𝐵

𝜇0𝜌
 

Another one! Sound speed:  𝐶𝑠 = 𝛾
𝑝

𝜌
 

Since plasma is a fluid interacting with the magnetic field → 

characteristic speeds = combinations of Alfvén and sound speeds 



6.2 SHOCKS  

Three types of waves propagate in the magnetized solar wind plasma. They are ordered by their 

characteristic speeds (phase velocities), which are called fast, intermediate, and slow (𝑣𝑓𝑎𝑠𝑡, 𝑣𝑖 ,

𝑣𝑠𝑙𝑜𝑤, respectively) and they are defined as follows: 

𝑣𝑓𝑎𝑠𝑡/𝑠𝑙𝑜𝑤
2 =

1

2
𝐶𝑠
2 + 𝑣𝐴

2 ± 𝐶𝑠
2 + 𝑣𝐴

2 2 − 4𝐶𝑠
2𝑣𝐴

2𝑐𝑜𝑠2𝜃𝐵𝑛 ,                 𝑣𝑖 = 𝑣𝐴𝑐𝑜𝑠𝜃𝐵𝑛 

    𝜃𝐵𝑛 = angle between the incoming magnetic field and the shock normal vector 

3 types of shocks, depending on the speed of the incoming flow: 

→ v > vfast ⇒ fast shock 

→ v > vslow ⇒ slow shock 

→ v > vA 

     v < vfast   

 

⇒ intermediate shock 

For any θ, Cs and vA,    vfast ≥ vA ≥ vslow  . 



6.2 SHOCKS  

2a. Slow (magnetoacoustic) shocks 

→ Magnetic field decreases and gets refracted towards the 

shock normal 

→ Plasma pressure increases 

v > vslow 

upstream downstream 

Slow shock observed in Wind magnetic 

field and proton data on April 6, 1995. 

Credits: Wang et al., 1998  



6.2 SHOCKS  

2b. Fast (magnetoacoustic) shocks 

→ Magnetic field increases and gets refracted away 

from the shock normal 

→ Plasma pressure increases 

v > vfast 

upstream downstream 

Fast shock 

Fast shock 



6.2 SHOCKS  

2c. Intermediate shocks 

→ The tangential component of the magnetic field flips across the shock normal 

v > vA 

v < vfast   

Observed magnetic field on 9 January 1979 

in the shock coordinate system (intermediate 

shock). Credits: Feng and Wang, 2008 

Feng and Wang (2008) identified an 

intermediate shock observed by 

Voyager 2 on January 1979. The 

tangential component of the magnetic 

field changed sign across the shock 

front; the normal Alfvén Mach number 

is greater than unity in the preshock 

state and less than unity in the 

postshock state; the fast-mode Mach 

numbers in the upstream and 

downstream regions are less than unity 

and both slow-mode Mach numbers 

are greater than unity → intermediate 

shock.  



MPI-AMRVAC simulation of 2 CMEs until 1 AU 
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ARIGATO FOR YOUR ATTENTION! 

AND DON’T FORGET…. 

…MHD IS AWESOME! 


