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1. IDEAL MHD

Sooo what 1s MHD?

certainly not magic

Hydrodynamics +

equations of gas dynamics + Maxwell’s equations
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1. IDEAL MHD

What about the “ideal” part?

Assumptions:
 characteristic time >> ion gyroperiod and mean free path time
 characteristic scale >> ion gyroradius and mean free path length
» plasma velocities are not relativistic
 uasineutrality

- all dissipative processes (finite viscosity, electrical resistivity, thermal
conductivity) are neglected



1. IDEAL MHD

Then... when is MHD useful?

Galactic ’

« describes macroscopic force balance, equilibria  cosmic rays
and dynamics on large scales N,

« MHD - good predictor of plasma stability

Pioneer 10
™ ]

N,

» systems described well by MHD: P

» solar wind, heliosphere, Earth’s magnetosphere
(large scales)

* neutron star magnetospheres
* inertial range of plasma turbulence

Bow Shock
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2. IDEAL MHD EQUATIONS

 describe the motions of a perfectly conducting fluid interacting with a magnetic field

* conservative form: % (..)+V-(..) =0; v-B=0 (no magnetic monopoles)

Mass conservation

Momentum equation

Energy conservation

Magnetic flux conservation

dp

— Vl :

6t+ (pv) =0

d(pv) 1, B B

5% + V- |pvv + p+§B I-BB| =0, p=(y—1)pe

Jd (1 y) 1 y) 1 y) y)
3 Epv +pe+§B + V- Epv +pe+p+B“)v—v-BB| =0

aB+|7 (VB—Bv) =0
™ \' V) =
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2.1 MASS CONSERVATION

o L p. _
5 TV (pv) =0

P = mass density
v = flow velocity dS=nds
pvS = mass flux passing

<4

Net influx of mass through the surface

Rate of increase of mass
(density) in control volume

Input = Output + Accumulation,
In our case with Accumulation =0

Mass flow out
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.2 MOMENTUM EQUATION

2

Stress tensor

A

s \
d(pv) 1 ,
= plasma pressure
——=+V: |pvw+|p+-B%|I-BB[=0 P =P P
ot 2 B2 .
\ indicates — = magnetic pressure
\ - isotropy
Gradient of Magnetic
convective flux tension
of momentum v
v Total pressure
Time derivative of (gradient) Lh b A
momentum density B
Pressure Gradient Force B
steep pressure gradient shallow pressure gradient
(fast winds) (slow winds)
(-5 O
= B
s [ ®.
- A
y I P Regions of high magnetic pressure The magnetic tension force is directed radially
di t" = exert a force towards regions of low inward with respect to magnetic field line
—— magnetic pressure curvature; it wants to straighten field lines
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2.3 ENERGY CONSERVATION

Total energy density Energy flow
A

( \ r \

d (1 5 1 2
azpv pe+ZB +V- pv +pe+p+B VvV — VBB=O
\

/ Electromagnetlc flow
Internal energy Flow of kinetic (a.k.a. Poynting vector)
density energy

Kinetic ener Work done on the plasma p = —Dpe
density o Magnetic field from the pressure gradient vy = adiabatic index

energy density = internal energy
per unit mass

\ 4

Flow of internal

. P 1
Potential energy density = 1 + = B energy

(expressed in primitive variables)

The entropy of any plasma element is constant.
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2.4 MAGNETIC FLUX CONSERVATION,
FROZEN-IN CONDITION

F1
OB )V+ 7( e Magnetic flux tube = cylindrical volume
—4+ V- (VB — BV) =0 enclosed by the collection of field lines that
ot ) intersect a closed curve

represents conversion of mechanical Wi
energy to electromagnetic induction

Magnetic field
time variation

d
n (f B - dS) — () Frozen-in condition
S

1) The magnetic flux through a surface moving with the plasma is conserved.
2) Magnetic field lines behave as if they move with the plasma.
3) Magnetic topology is conserved.



3. PLASMA B

thermal pressure  2Uopep B2

Ptn = 2nKT; Pmag = 2010

magnetic pressure B?

Both obey the frozen-in condition, the difference is which component is dominant

A
4 \

f < 1:magnetic field carries the plasma f > 1:plasma carries B as it moves

Sketch of a sunspot with
forming penumbra.
Credits: Bourdin, 2017
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Computed dependencies of logarithms
of the density p and the temperature T.
Credit: Fedun, Shelyag and Erdélyi,
2010

Plasma beta model over an active region. The plasma
beta as a function of height is shown shaded for open
and closed field lines originating between a sunspot of
2500 G and a plage region of 150 G.

Gary, 2001
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4. ALFVEN MACH NUMBER

B , pvz BZ
My=—= Vy = = Alfvén speed,; =, = —
Vg pmag A NITRY?) f p » Pram 2 ! pmag 2o
basically MZ __ kinetic energy
7 s ;. ’ A — .
M, < 1:sub - Alfvénic flow/speeds M, > 1:super — Alfvénic flow/speeds magnetic energy
16 ......... B0l I A i B pa o e e s o

Oooor this...

' T R N

¥

...............
---------------
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8

Sunspot number

3

St Habbal,. M. Druckmuller and P. Aniol

1970 1980 1990 2000 2010

Plot of the Alfvén Mach number (top) and
sunspot number (bottom) as a function of
time through the solar cycle using 27 day
averaged OMNI2 data. Zank et al., 2014

Low corona: low speeds, still strong
magnetic field => sub-Alfvénic flows

it

De Havilland Mosquito



5. SINGLE PARTICLE MOTION IN EM FIELDS

Lorentz force

Not this guy.
Definitely not.

ard name is placed on'i¥
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5. SINGLE PARTICLE MOTION IN EM FIELDS

av This guy.
m—o = q(E + v XxB) Lorentz force -y -
: a’..-h. &
Simple case: E=0 0 Ux We calculate first and second
then Let'sassume:B =| 0 V=|"Vy then derivatives of the speed and solve the
mﬂ — qvx B B U, differential equation system and voila!
dt
qB . (9B _
v, = Ajcos (— t) + Bysin (—t v, (0) = v . _gB
X Zﬁ; Zln AlS6 vy(O) —0 and We define: w, = — cyclotron frequency
v, = Aycos (— t) + B,sin (— t) ,(0) =0
m m



5. SINGLE PARTICLE MOTION IN EM FIELDS

dV_ E+vXB

gyroradius or cyclotron radius
+

Some | D=1y COS (@) X=|2Ysin(wt)
mathematical Solution: xz_g sin(wc 0 and P
magic... y— 0 ¢ v=2_cos(wct)

CIRCULAR MOTION!

Right hand rule

THE
LEFTHAND 4
RULE.
LIVERPOOL. BROOKLYN.
PARIS.
g e o
MOSQ)K[ f e ,f‘-'- --"‘\.h
Ol (/- s B o
‘ YOSEMITE
i Z NATIONAL
2 PARK.

- EI.EI'.'."II'HI.'IIIS + Il.'II S

MAGNETIC FIELD LINES

Force is in direction Force direction is

that thumb points. outward from palm. Make sure you don’t end up like this...
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5. SINGLE PARTICLE MOTION IN EM FIELDS

dv
md_t = q(E +v X B) Lorentz force
A 4 A A B t 4 | tB
/__ /——
Let’s consider P
0 Uy
v N —
B z Motion?

but the components of
the initial velocity parallel
and perpendicular to B
are non zero.

1

NN

]
\VERVERVERV/
VARVERVERV/

along the magnetic
a= p|tch ang|e field lines!

%&‘2

q>0
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5. SINGLE PARTICLE MOTION IN EM FIELDS

Countless!

MIRROR POINT
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Particles trapped inside Earth’s magnetic
field lines; magnetic mirroring
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Accelerators

Bubble and cloud chambers
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":«?. Sa

Counter-
streaming

electrons ‘

ICME “

Electron
heat flux

Electrons inside magnetic flux ropes
of ICMEs. Owens 2016
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5. SINGLE PARTICLE MOTION IN EM FIELDS

~
A"
mo = q(E +v X B) Lorentz force > = E x B drift, with a speed:
EXB
: . Vp =
Let’'s add also E perpendicular to B; we make the substitution;v=w + E X B D B?

= E X B drift independent of particle mass, charge or speed!

(00007 -6

Motion?2 drift across the magnetic field lines
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5. SINGLE PARTICLE MOTION IN EM FIELDS

A"
mE = q(E +v XB) Lorentz force
What about gravity? e
positives +
dv | _ 1FXB
m—=F+q(vXxB)=q(=F+vxB) = drift speed: | vp = —
dt q q Bz B
o |F
Motion? drift across the magnetic field lines, dependent on charge! ‘Wr
negatives -

TRAJECTORY QF
TRAPPED PARTICLE
OINT

2

AR s

Curvature drift
important in this case!

DIRECTION OF
ELECTRON DRIFT

MAGNETIC
FIELD LINE

DIRECTION
OF PROTON
DRIFT
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6. SHOCKS AND DISCONTINUITIES

= surface separating two fluids (or gases) with
different physical properties, in equilibrium

Notation: [f] = f1 — f>

indices “n” and “t” will denote the components of a vector
normal and tangential to the surface, and indices 1 and 2 the
different media upstream or downstream of the shock front

Variables: p, v,, v, P, B,,, B¢ ; the discontinuity/shock type is determined
by the variables that jump (vary) across the surface

Difference?
anyw 0
Shsek froi Types of discontinuities: Types of shocks:
la. Contact 2a. Slow mass flows
1b. Tangential no mass flow 2b. Fast } through
1c. Rotational — mass flows 2c. Intermediate) boundary
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6.1 DISCONTINUITIES

la. Contact discontinuity

= boundary between two media which have different densities and temperatures; no flow of mass across it

2
\Z B, # 0, field lines can cross the discontinuity

Jumping: [p] # 0
Continuous: v, = 0,[v¢] =0, [p] =0,[B,] =0,[B] =0

no mass flow across the surface
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6.1 DISCONTINUITIES

1b. Tangential discontinuity

- no mass flow, no magnetic flux across it

B, = 0, field lines do not cross the discontinuity; upstream and
downstream magnetic field vectors are parallel to the shock plane

B, Jumping: o] # 0,[v] # 0,[[p] # 0, [B¢] = 0
2
Continuous: v, = 0,B,, = 0, |lp + :Tt]l =0
0

~ N Stream Interface

side 2 p LA AAAAANAA

vV, Ut

ptot INANANANANANANST

Ba Bt

After Burlaga and Ness, 1969

T After Strauss et al., 2016
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6.1 DISCONTINUITIES

e 1c. Rotational discontinuity
= actually a particular case of intermediate shock, in which [p] = 0; plasma
flows across the surface

All thermodynamic quantities are continuous across the shock, but the
tangential components B; and v; can rotate (but same magnitude).

Jumping: [[vi] # 0,[B] # 0

Continuous:[p] = 0, v, ] =0,[p]l =0,[B,] =0
Bn

side2 Propagation speed = normal Alfvén speed =

p AN NANNANANAST NN
VeV VeV a Ve Ve Ve U
Ut
ANANANANANANAN_—
p INNANNNANANSTINAANANANNNAN




= discontinuities across which there is a flux of mass; they are created when the plasma is moving with a
speed higher than the information can propagate and encounters an obstacle.

All MHD shocks have the property of coplanarity = downstream magnetic field lies in the plane defined by
the upstream magnetic field and the shock normal

Jumping:  [p] # 0, [v,] # 0, [p] # 0,[ve] # 0,[B] # 0
Continuous:[B,] = 0

B

VHop Since plasma is a fluid interacting with the magnetic field —
Another one! Sound speed: C, = y% characteristic speeds = combinations of Alfvén and sound speeds

Remember Alfvén speed? v, =
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6.2 SHOCKS

Three types of waves propagate in the magnetized solar wind plasma. They are ordered by their
characteristic speeds (phase velocities), which are called fast, intermediate, and slow (v¢qs, v;,

Vgow, FeSpectively) and they are defined as follows:

ngast/slow = (Csz + Ui) * \/(Csz + 17/21)2 - 465217/%(30529311 ) v; = vy 080,

1
2

05, = angle between the incoming magnetic field and the shock normal vector

Forany 6, C.and V,, Vi 2 Va 2 Vgow -

3 types of shocks, depending on the speed of the incoming flow:
— V >V, = fast shock

— V > Vg, = Slow shock
_)V>VA} intermediate shock
= intermediate shoc
V < Viast



" 6.2 SHOCKS N

340
2a. Slow (magnetoacoustic) shocks 5l - WIND v ndms
V> Vgiow >l -
— Magnetic field decreases and gets refracted towards the ! sk
shock normal ; T
— Plasma pressure increases 20
E_d ) _2.5
Slow Shock n. . i R B _:
p ' | .
Bn ey pemeuppeney, U B . .I | | I__ 0.2
B, Bt .*qu?‘v- e . _-9,1
P Prot W‘«u&gi : | | I_ |
Vi o g | et R !
v o W 8 ] o - E
PAArAAA AR ' ":""01:00 ; s
v,V : - 0000 0030
b s, UT (April 6, 1995)
On s Slow shock observed in Wind magnetic
upstream. 1 downsiream field and proton data on April 6, 1995.
Preshock Postshock |

Siow Shock 2 Credits: Wang et al., 1998
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6.2 SHOCKS

MAGNETOSPHERE

2b. Fast (magnetoacoustic) shocks

v > Vfast

— Magnetic field increases and gets refracted away
from the shock normal
— Plasma pressure increases

Fast Shock 7 [Eaenrpsie

_SOUAR APEX —

BOW SHOCK

INTERSTELLAR WIND
e

/ upstream f downstream
l Fast Shock 2

~ Fast shock -

Preshock Postshock
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6.2 SHOCKS

2c. Intermediate shocks

vV > VA
V< Vfast

— The tangential component of the magnetic field flips across the shock normal

' N e | ' | Feng and Wang (2008) identified an
Intermediate Shock - “ | intermediate shock observed by
P ?-n’“_oz | Voyager 2 on January 1979. The

tangential component of the magnetic
field changed sign across the shock

ol | | | | | front; the normal Alfvén Mach number
E oL — . e . . - Iisgreater than unity in the preshock
| | state and less than unity in the

o ‘ . , , postshock state; the fast-mode Mach

Vs onn , ‘ ‘ , i numbers in the upstream and

_os| | downstream regions are less than unity
EC_OAM and both slow-mode Mach numbers
® ol 1 are greater than unity — intermediate

20 2.1 215 2.2 225 23 shock.

UT January 9, 1979
Observed magnetic field on 9 January 1979

in the shock coordinate system (intermediate
Preshock Postshock shock). Credits: Feng and Wang, 2008




DB: newWind0087.vtu
Cycle: 87 Time:0.51746

Pseudocolor
Var: log_rho

0.004724
B

—-1.673
—3.352

—5.030

Max: 0.004724
Min: -6.708

user: root
Wed Mar 7 11:47:09 2018

MPI-AMRVAC simulation of 2 CMEs until T AU
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ARIGATO FOR YOUR ATTENTION!

AND DON'T FORGHET....

...MHD IS AWESOME!



