

Conception mécanique des détecteurs d'ondes gravitationnelles:

Performances actuelles et challenges pour les détecteurs de 3^{ème} génération

Christophe Collette Precision Mechatronics Laboratory

1916: Théorie de la relativité générale

La fusion d'objets massifs (trous noirs) génère des déformations de l'espace, créant des déplacements de 10⁻¹⁸ m entre deux objets situés à 1 km de distance.

Observatoires existants

On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal.

Sensitivity

aLIGO noise budget

Seismic isolation requirements

C. Collette, Promoptica (June 20, 2018)

Seismic isolation principle

Strategy 1: Passive isolation

Wanner PhD thesis (2013)

Hybrid Systems J. Kissel, GWADW, May 17 2012 G1200556-v1 Advanced VIRGO, Kagra, ET – The Design

- 7 Stages of Isolation
 - Inverted Pendula Pre-isolation stages (Horz. only)
 - Blade springs and tunable anti-spring vertical pendula (geometric, magnetic)
- Sensors and actuators for 6 DOFs of 6th stage, 4 DOFs (Long., Vert., Pitch, Yaw) at 1st stage
- (4 + 6 + 3) = 13 out of 42 Trans./Rot. resonant modes sensed and controlled

Performance limited by

- direct transmission of ground motion
- Length of the stages
- Ultra-soft system: 1N on 1 ton creates a motion of 1cm

Mechanical Transfer Function with actual number of filters varying the filters masses

Strategy 2: Active isolation

Hybrid Systems J. Kissel, GWADW, May 17 2012 G1200556-v1 Advanced LIGO - The Design

- 7 Stages of Isolation
- •6 DOF sensing on stages 1 4, 3 DOF on 5 6
 - Inertial and displacement on stages 1-3
 - Displacement only on stages 4 6
- + 6 DOF DC 1kHz actuation on Stages 1 4, 3 DOF on 5 7
- (6+6+6+[3*6+4]) = 40 out of 42 Trans./Rot. resonant modes sensed and controlled
- Many-control-loop system
 - Sensor blending, Feed back, Feed forward, Sensor Correction, Heirarchical control
- Versatile 800 kg payload
- Stage 1 3 "Performance limited by sensor noise," Stage 4 – 7 "Performance limited by direct transmission of platform motion"

Limitation 1: Mechanical design

Initial prototype (2008)

F. Matichard, Precision engineering, 40 (2015), 287-297

Compensator was made of 104 poles and zeros.

C. Collette, Promoptica (June 20, 2018)

Limitation 1: Mechanical design

Final Design (2011)

C. Collette, Promoptica (June 20, 2018)

Limitation 2: Sensor noise

Two-stage active seismic isolation

C. Collette, Promoptica (June 20, 2018)

Limitation 3: Tilt-horizontal coupling

At low frequency, inertial sensor cannot make the difference between support acceleration and rotation 1. Suspended seismometer

2. Tilt substraction

Fabrice Matichard, LIGO P1400061

Krishna Venkateswara, BSSA 107(3) 2017

Transfer function comparison

R. Adhikari, Gravitational Radiation Detection with Laser Interferometry (2014).

Dr. M. Van Camp

Optical inertial Sensor

Active vibration isolation system

LIGO / LHC comparison

aLIGO noise budget

Thermal noise

Can be modelled by a random force whose spectral density is :

$$\Phi_F(f) = 4k_B T c (N^2/\mathrm{Hz})$$

Power spectral density of suspended mass acceleration:

$$\Phi_B(f) = \frac{f^4}{(f_0^2 - f^2)^2 + (2\xi f_0 f)^2} \frac{16\pi k_B T \xi f_0}{m} (m/s^2)^2 / Hz$$

For example, taking $\xi = 0.7$, T = 300 k, M = 10 gr, $f_0 = 1$ Hz $\Phi_B(f) = 7.3 \times 10^{-17} (\text{m/s}^2)^2/\text{Hz}$ RMS value : 0.02 nm !

C. Collette, Promoptica (June 20, 2018)

Thermal noise

- Thermal noise reduction: monolithic fused silica suspension as final stage
 - low pendulum thermal noise and preservation of high mirror quality factor :
 - silica fibre loss angle ~ $3 \cdot 10^{-7}$,
 - *− c.f. steel ~2·10*-4

aLIGO noise budget

Newtonian noise

Universal law of gravitation :

$$F_1 = F_2 = G \frac{m_1 \times m_2}{r^2}$$

G=6.67 10⁻¹¹ N.(m/kg)²

Newtonian noise

Newtonian noise

Solution 1 : seismic sensor arrays

→ Measure seismic field
 → Calculate gravitational field
 → Estimate the resulting motion
 → Substract it with feedforward

Solution 2: detector underground

Detectors of 3rd generation :

- Reduce thermal noise
 - Heavy mirror, low dissipation, low frequency
 - Cryogenic temperature
- Improve seismic isolation at low frequency

 Active seismic isolation
- Newtonian noise reduction
 Build detector underground
- Increase strain sensitivity
 - Longer arms

Einstein Telescope: 100 000 détections par an !

Features:

- 6 interferometers
- 10 km long
- Large mirrors
- Cryogenic temperature

13

14

38

827

Ļ	Cons	truction	du site	592
	Conio	auton	au ono	002

- Système de vide 170
- Cryogénie
- Suspensions
- Optique
- → Total
- → Marge pour imprévus 30 %
- Total avec marge 1 075

NIDEF

C. Collette, Promoptica (June 20, 2018)

3 sites en compétition

Euregio / Sardaigne / Hongrie / ...

More on Einstein Telescope

• Conceptual Design Report:

https://tds.virgo-gw.eu/?content=3&r=8709

• Letter of intent:

http://www.et-gw.eu/index.php/letter-of-intent

