ECMWF reanalysis activities update

Hans Hersbach

and many colleagues

Rationale behind reanalysis

Consistent reconstruction of the atmosphere (and ocean):

- glue together observations from different nature and origin into global fields,
- using the laws of physics of the atmosphere
- with an appropriate bias correction scheme
- using the same system over the entire reanalysis period.

At lower resolution to keep affordable

Global reanalyses produced at ECMWF

ERA-20C climate reanalysis forcing: You need realistic energy budgets for the atmosphere

And it needs to reflect the 20th century evolution

Greenhouse gases RECENT GLOBAL MONTHLY MEAN CO. PARTS PER MILLION 2010 2015 YEAR

Volcanic eruptions

SST and sea ice

ERA-CLIM climate pilot reanalyses

Configuration

- ✓ IFS Cy38r1: Atmosphere and ocean-wave component
- √ T159 (~125km), 91 levels in the vertical (up to 1 Pa)
- ✓ CMIP5 forcing
- √ 10-member ensemble
- **√** 1900-2010

ERA-20CM: model only

ERA-20C: surface observations only

ERA-PreSAT: in addition early upper-air data (1939-1967 only)

CERA (to be started soon; Cy41r2): coupling with the ocean

The QBO in ERA-CLIM

ERA5: the ERA-Interim replacement

	ERA-Interim	ERA5
Start of production	August 2006 IFS Cy31r2	End 2015, reach NRT end before 2017 IFS Cy41r2
Model input (radiation and surface)	As in operations, currently OSTIA (inconsistent SST)	Appropriate for climate (CMIP5 including AC&C SPARC ozone, blend HadISST.2.1.0 and OSTIA)
Analysis method	12h 4D-Var	12h 4D-Var on 10-member EDA (T319, 63km)
Spatial resolution	79 km global 60 levels to 10 Pa	31 km global (T639) 137 levels to 1 Pa
Output frequency	6-hourly Analysis fields	Hourly (three-hourly for the EDA), Extended list of parameters \sim 5 Peta Byte
Time period	1979 - present	1979 - present
Extra Observations	Mostly ERA-40, GTS	Various reprocessed CDRs, including for ozone
Radiative transfer	RTTOV7	RTTOV11+ CO2, SSU cell-pressure correction
Variational bias corrections	Satellite radiances	Also ozone, aircraft, surface pressure

ERA5 will use 137 levels in the vertical

QBO: Hovmöller U from free 6y integrations

ERA5 will benefit from the latest IFS cycle 41r2

Example: updated semi-Lagrangean departure scheme significantly improves the forecasts of sudden stratospheric warming events

Day-5 verification vs GPSRO

Michail Diamantakis

Temperature 5 hPa

Climate errors due to infrequent calls to radiation scheme

- All but one operational IFS configurations call radiation scheme only every 3 h
- At dawn & dusk, sun angle at centre of 3-h period too shallow: absorption too high
- Stratosphere too warm by 3-5 K (compared to running radiation scheme every timestep)
- "Wiggles" in mean fluxes versus longitude (Zhou et al 2015)
- Fix by averaging cosine of solar zenith angle over sunlit part of radiation timestep
- This is in 42R1, will be in ERA5

Hogan & Hirahara (ECMWF memo 2015)

Improved observing system Example: Ozone, ERA-Interim vs ERA5

Used / same version

Used / new version

Never used

Available from CCI

Rossana Dragani

Plus variational bias correction

Access to ECMWF reanalysis data

!New: access to observation feedback!

ERA5 will produce hourly archiving

Example: t2m vs. Independent Observations (from Clement Albergel)

Concluding remarks

On behalf of the European Commission *ECMWF* has been entrusted to operate the:

- ✓ Copernicus Atmosphere Monitoring Service CAMS
- ✓ Copernicus Climate Change Service C3S

As part of C3S ECMWF will conduct ERA5 (2016-2017)

- ✓ state-of-the art reanalysis, operational service, cycle ~5 years
- ✓ higher resolution, ensemble, latest model cycle, reprocessed data

As part of *CAMS*, a reanalysis of atmospheric composition 2003-present will be produced

ERA-Interim is currently being continued

A number of century-long 'climate' reanalyses have been conducted within the **FP7** *ERA-CLIM* project and a coupled reanalysis, *CERA*, is to be conducted soon within the *ERA-CLIM2* project.

