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Motivation
Reanalysis	using	a	variational bias	correction	scheme	

is	an	effective	way	to	‘harmonize’	
the	long-term	data	record

• Reanalysis	glues	together	a	multivariate,	complex	and	evolving	observing	 system.

• Using	the	laws	of	physics	with	a	consistent	model	formulation	 throughout
and	an	advanced	data	assimilation	system

• A variational bias	scheme	(VarbC)		can	be	seen	as	an	automatic
statistical	method	for	cross-calibration	of	observing	 systems

• VarBC relies	on:
• Complementarity	of	the	observing	system
• Independent	unbiased	 reference	observations	(‘anchors’)

• If	these	conditions	are	not	met,	interaction	between	model	bias	and	an	evolving
observing	system	can	have	a	negative	effect	on	the	estimation	of	trends.



The problem of model bias



The effect of bias (model or data) on trend 
estimates



Based	on	monthly	CRUTEM2v	data	(Jones	and	Moberg,	2003)

Based	on	ERA-40	reanalysis

Implications	for	data	assimilation:	
ERA-40	surface	temperatures	compared	to	land-station	values

Northern	hemisphere

Based	on	ERA-40	model	simulation	(with	SST/sea-ice	data)

Surface	air	temperature	anomaly	(oC)	with	respect	to	1987-2001



The need for an automatic
bias correction scheme



First	one	needs	an	adequate	bias	model

Diurnal	bias	variation	in	a	geostationary	satelliteConstant	bias	(HIRS	channel	 5)

Prerequisite	for	any	bias	correction	is	a	good	model	for	the	bias
Ideally,	guided	by	the	physical	origins	of	the	bias.
In	practice,	bias	models	are	derived	empirically	from	observation	monitoring.
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Scan	bias	and air-mass	dependent	bias	for	each	satellite/sensor/channel were	estimated	
off-line	from	background	departures,	and	stored	in	files	(Harris	and	Kelly	2001)

Satellite	radiance	bias	correction	at	ECMWF,	prior	to	2006
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Periodically	estimate	scan	bias	and	predictor	coefficients:
typically	 2	weeks	of	background	departures	
2-step	regression	procedure
careful	masking	 and	data	selection

Average	the	background	departures:

Predictors,	for	instance:
1000-300	hPa	thickness
200-50	hPa	thickness
surface	skin	temperature
total	precipitable	water



The	need	for	an	adaptive	bias	correction	system

The	observing	system	is	increasingly	complex	and	constantly	changing
It	is	dominated	by	satellite	radiance	data:	

biases	are	flow-dependent,	and	may	change	with	time
they	are	different	for	different	sensors
they	are	different	for	different	channels	

How	can	we	manage	the	bias	corrections	for	all	these	different	components?
This	requires	a	consistent	approach	and	a	flexible,	automated	system



• Radiance bias expressed in terms of a small number of parameters:
• A constant offset 
• Predictors depending on instrument scan position
• Predictors depending on the atmospheric state x, i.e inspired by Harris and Kelly 2001

Variational bias correction of radiance data

• Add the bias parameters to the control vector in the variational analysis
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• The analysis then estimates bias parameters jointly with model state variables 
(Derber and Wu 1998)



The	ability	for	anchors	to	do	their	job:
fit	to	conventional	data

Introduction	of	VarBC
in	ECMWF	operations



Extension	to	other	types	of	observations

Current	bias	‘classes’	in	the	ECMWF	operational	system:
•Radiances:	clear	sky/all	sky,	infrared/microwave,	polar/geostationary
•Total	column	ozone:	predictor	for	solar	elevation
•Aircraft	data:	one	group	per	aircraft
•Total	column	water	vapour:	 ENVISAT	MERIS	until	April	2012
•Ground-based	 radar	precipitation:	one	group	embracing	US	stations

Other	automated	bias	corrections,	but	outside	4D-Var:
•Surface	pressure
•Radiosonde temperature	and	humidity
•Soil	moisture	(in	SEKF	surface	analysis)

Specific:
•ERA-Interim:	VarBC for	radiances	only,	RASE	for	radiosondes
•ERA-20C:VarBC surface	pressure;	one	group	per	station
•MACC:	atmospheric	composition
•ERA5:	as	in	current	operational	model,	but	VarBC for	surface	pressure,	
RASE	or	VarBC for	radiosondes

Bias	estimate	Aura/OMI



Examples of VarBC
in ERA interim



Satellite data used in ERA-Interim

Infrared	
radiances

temperature	sounding

water	vapor sounding

stratospheric	temperature	sounding

temperature	and	water	vapor sounding

Microwave	
radiances

Imagery visible,	near	infrared,	water	vapor

Hyper-spectral	infrared

Ozone

Atmospheric	motion	
vectors

geostationary	(GEO)
low-earth	orbit	(LEO)

Bending	angles	from	GPS	radio	occultation

Backscatter

mostly	ultra-violet,	
some	limb-viewing	infrared

near-surface	wind	above	ocean



On-board	warm	target	variations	for	
MSU	NOAA-14				(Grody et	al.	2004)

Clear example of observation bias:
instrument drift for MSU



Stratosphere

Topics:

• Response	to	Pinatubo
• Constraining	the	upper	stratosphere	

to	address	model	bias



Response to Pinatubo eruption
ERA-40:		Excessive	precipitation	over	tropical	oceans	–worse	after	Pinatubo

Pinatubo	eruption



Response to Pinatubo:  HIRS Ch11

Volcanic	aerosols	in	the	lower	
stratosphere:

• Cooling	effect	on	 radiances	
• Not	in	the	radiative transfer	model
• ERA-Interim:	Change	the	bias	
correction	
• ERA-40:	Change	the	humidity	
increments

Bias	corrections	for	HIRS	Ch11	(tropical	averages)	

Bias	corrections	for	NOAA-12:

• In	ERA-Interim,	correct	initialisation
followed	by	gradual	recovery	

• In	ERA-40,	bias	was	held	 fixed



Response to Pinatubo:  MSU Ch4

Volcanic	aerosols	in	lower	stratosphere:

• Microwave	radiances	are	insensitive	 to	aerosol,	 but	
correctly	measure	warming	of	the	stratosphere
• The	effect	of	aerosol	changes	on	radiation	is	not	
accounted	for	in	the	forecast	model	(biased	 cold)
• This	 causes	a	(false)	 bias	adjustment	for	MSU	

The	result	is	a	slight	damping	of	the	Pinatubo	signal in	
ERA-Interim

Still	the	best	option,	 given	large	variations	in	the	MSU	
biases

Bias	corrections	for	MSU	Ch4	(tropical	averages)	

Fundamental	limitation	of	variational bias	correction:

• bias	parameters	are	used	to	minimise mean	departures,	regardless	of	the	cause
• variational bias	correction	may	not	work	well	in	poorly	observed	regions	with	large	model	biases	



ERA-20CM:	model-only	integration	based	on	
CMIP5	forcing

CRUTEM4 data (Jones et al., 2012)
ERA-20CM

Hersbach,	Peubey et.	al.	2015,	QJRMS

+	HadISST2

The	model	knows	about	Pinatubo

ERA5	will	use	CMIP5	forcing:
but	not	for	RTTOV,	so
should	address	model	 issue	for	MSU,
But	not	RTTOV	issue	for	HIRS



ERA-20CM global temperature anomalies

50	hPa

500	hPa

2	m



Stratosphere

Topics:

• Response	to	Pinatubo
• Constraining	the	upper	stratosphere	

to	address	model	bias



How to constrain model biases in the upper stratosphere?
The	model	 is	generally	too	
cold	(by	as	much	as	20K	in	
polar	winter)
Variational bias	correction	of	
SSU	Ch3	would	result	in	large	
temperature	biases	near	the	
stratopause

The	top	of	the	model	must	be	constrained	by	uncorrected	observations:
SSU	Ch3 (available	until	2006),	 AMSU-A	Ch14 (available	from	1998)

The	constraints	provided	by	each	
sensor	are	fundamentally	different

Jacobians	 for	SSU3	and	AMSUA-14

Both	sensors	result	in	systematic	(but	partial)	
corrections	to	the	model	background	

Global	mean	temperature	increments	above	40hPa



Shifts in upper-stratospheric temperatures

The	transition	from	SSU	Ch3	to	AMSU-
A	Ch14	is	clearly	visible	in	global	mean	
temperatures	at	5hPa	and	above

This	problem	cannot	be	completely	
solved	unless	the	forecast	model	is	
free	of	bias

ERA-Interim

Global	mean	temperature	anomalies	in	the	upper	stratosphere

ERA-40

JRA-25

NCEP



Competition between anchors



Anchoring data for the troposphere:  
Radiosondes

Global mean departures and data counts for radiosonde temperature data

NOAA-15

NOAA-16
Model biased warm relative to radiosondes



Anchoring data for the troposphere:  
Aircraft reports

Global mean departures and data counts for aircraft temperature data

NOAA-15

NOAA-16
Unbiased relative to aircraft reports



Solution:	VarBC for	aircraft	temperature

For	each	aircraft	separately	(~5000	distinct	aircraft)
Anchored to	all	temperature-sensitive	observations
Bias	model:		β0 +	β1 x	ascent	rate	+	β2 x	descent	rate	

Average	temperature	departures	for	
the	northern	hemisphere	 during	a	
2-week	period

Aircraft Radiosonde

Control
Impact

Used	in	the	operational	system
And	to	be	used	in	ERA5



What do we learn from the applied bias 
corrections?

Do they provide inter-calibrated,
homogenized long-term data sets?



Mean fit to selected sounding channels [K]
Mid	to	upper	stratosphere

Middle	troposphere

Lower	stratosphere



Mean bias adjustments [K]



Drift	due	to	CO2	
loss	 in	PMR	cell

Drift due	to	H2O	loss

Drift	due	to	increase	in	
unadjusted	 radiosonde	data

Underestimation	by	
model	of	Pinatubo	

warming
Assimilation	 of	
GPS	RO	data

Solar	heating	change	
due	to	orbital	drift Drift	in	data	from	early	AMSU	A	

instruments	 due	to	frequency	
shifts	 of	local	oscillator

Drift	due	to	fixed	
CO2 in	RTTOV

Poor	HIRS	spectral	
response	 functions

Mean bias adjustments [K]



Global temperature anomalies
ERA-Interim																					ERA-40																											JRA-55



Concluding remarks
An adaptive system for dealing with data ingest and bias correction is practically 
indispensable for reanalysis in the modern satellite era. This was the original 
motivation for using variational bias correction in ERA-Interim.

From the ERA-Interim experience we have learned that an adaptive bias correction 
system is in fact a requirement to be able to correct time-varying instrument errors 
(e.g. MSU), to handle major atmospheric forcing events (e.g. Pinatubo), to detect 
data drifts (e.g. AMSU-A), and to maintain optimal consistency among all data 
sources.

The long-term behaviour of the variational bias correction system in ERA-Interim is 
stable, but it is necessary to constrain model bias in the upper stratosphere with 
uncorrected SSU and AMSU-A observations.

As long as models have systematic errors it is not possible to completely eliminate 
false climate signals in a reanalysis or to have confidence in the inter-calibration of 
long-term datasets. 

In the presence of model error there is a conflict of interest between accuracy of the 
best reanalysis field and fidelity of climate trends.

By not anchoring model bias, trends can still be affected, though in an unnoticeable 
way.


