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Use	CDA	to	bring scientific value

• Observations	and	model	values,	in	general,	somewhat disagree

• The	hope is to	produce analyses	that has	scientific value

• Observations,	models and	assimilation	scheme alone
is not	sufficient do	the	job

• To	produce an	analysis also requires error statistics,	
bias corrections,	and	appropriate use	of	observation	operators
(e.g.	averaging kernels)

Thus to	bring added-value	of	CDA	requires the	developmentof	
of	state-of-the-art	data	assimilation	for	atmospheric composition
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Outline

q Fundamentals	of	CDA

q Estimation	of	error	statistics

q Quantification	of	chemical ozone	loss

q Forecasting chemical composition

q Facilitate satellite/data	intercomparison (Quentin	talk)

q Interaction	with NWP	(more	to	be said in	this workshop)
• ozone	radiation	interaction
• tracer-wind estimation
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Seminal observation made by Roger Daley in 1995 (result not published)
Error covariance evolution under advection 

There	is	no	advection	of	error	variance	with
meteorological data	assimilation,	 the	error
variance	and	error correlations are	linked
and	inseparable



Transport of errors and its spatial covariance (Cohn 1996)
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The	solution	 proposed	by	Cohn	(1996)

• Propagate the	spatial	error covariance	function
then
• Discretize the	covariance	function on	a	model	grid to	obtain

an	error covariance	matrix

Flip-flop	between discretized and	spatially continuous formulations	 is
also present with adjoint	models and	4D-Var	

- finite difference of	adjoint	(FDA)	

- adjoint	of	 finite difference models (AFD)

(Sirkes and	Tziperman 1997,	Hourdin and	Talagrand 2006,	Henze	et	al.	2007,	
Haines	et	al	2014)
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the	error covariance	is conserved between a	pair	of	Lagrangian points

in	particular the	error variance	is conserved along the	trajectory
or	obey the	advection	equation
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Has been applied to 3D CTM of long-lived species in
- Stratosphere (UARS, GOME, 

flight planning) 
- Troposphere (MOPITT)
also to multispecies, and to
- humidity in the troposphere

Sequential	filter					 (Menard et al. 2000, Khatattov et al. 2000, Dee 2003, Eskes et al. 2003, 
Marchand et al. 2004, Rösevall et al. 2007, van der A et al. 2010)
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This	error	variance	evolving	scheme	with	a	fixed	error	correlation	is	known	as
the	sequential	filter	(or	suboptimal	 Kalman filter)

Using a Choleski decomposition 
(small matrices ~ 2000 or less ) 
and
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analysis error variance
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Data	assimilation	methods	for	atmospheric	composition

Sequential	filter					

EnKF vs		4D-Var					

and	for	chemical	transport	

Comparison EnKF-4DVar	tracer	(O3	assimilation)
Skachko et	al	2014	GMD
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Error	statistics
Necessary and sufficient conditions to have the true error covariances in observation space 

HKKH =
~(a) the	gain	is	equal	to	the	Kalman gain

The	analysis	error	variance	is	minimum

(b)	 																																																																			the	innovation	covariance	consistencyTT BOBO ))((~~
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Estimation	of	scaling factors α (obs)		and		β (background)	
using the	Analysis Increment Method	(Desroziers et	a.	2005)

Example with H = I               True estimates ↔		α =	β =	1		

T
iii

T
iii BOBAtrBOAOtr ))(),(()))(,(( 11 −−=−−= ++ βαββαα

_______	 log-likelihood contour	lines
……....			χ2 contours	lines

• Χ2 = p	always passes	 through the	min(log-likelihood)
• Maximum	likelihood estimate is sensitive	 to	misspecification of	correlations
• The	Desroziers estimates have	innovation	 variance	consistency
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Estimation	of	scaling factors α (obs)		and		β (background)	
using the	Variational Method	(Desroziers and	Ivanov	2001)

Example with H = I               True estimates ↔		α =	β =	1		

_______	 log-likelihood contour	lines
……....			χ2 contours	lines
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• Innovation	variance	consistency	 is	not	respected	with	the	variational method
• The	variational method estimates are	more	sensitive	 to	misspecification
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Observation	error	adjustable	parameter

Model	error	adjustable	parameter

(Skachko et	al.	2015	in	preparation)

Estimation	of	observation	error and	model	error variances	in	an	EnKF
(1)	Observation	error using the	Analysis Increment Method	
(2)	Model	error using the	X2 diagnostic
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model	error	variance	parameter
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• One	value	of	model	error	variance	fits	all	species	assimilation
• Milewski and	Bourqui (2011,2013)	 found	 that	model	error	in	a	

CTM	is	due	primarily	to	the	errors	in	the	driving	 winds

(model	error	variance	parameter)
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we could take it one	step further and	estimate the	full	observation	error covariance,	
Or	practically estimate the	error variance	at	each levels and	
and	estimate observation	error horizonal and	vertical	correlations
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Using	an	accurate	transport	model
- Prather		2D	isentropic
- Vertical	upwind	scheme	driven	by	diabatic heating	

Estimation	method
• Estimates	of	 the	chemicalozone	loss
• Not	tied	to	any	threshold	value	

(Rosevall et	al.	2007,	Sagi	et	al.,	ACP	2014)

ODIN	SMR	limb	measurements

Ozone	loss estimation		- A	problemof	model	bias estimation



38

Chemical	ozone	loss		- vortex	mean	average	(70- 90	equivalent	latitude	s)

Antarctic	ozone	loss		- from	December	1st

Arctic	ozone	loss		- from	August	1st
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Interpretation	and	equivalence	of	the	method		(Ménard and	Sagi,	work	in	progress)	

• The	difference	between						(analysis)		and								(pure	 transport)	is	the	accumulated
transport	of	analysis	increments
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mean	analysis	increments			vs			accumulated	transport	of	analysis	increments
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• Equivalent formulation The	accumulated analysis increment can be calculated
using a	bias evolution equation
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de Grandpré et al., Mon. Wea. Rev., 2009 :
• MIPAS assimilation of ozone  ® big improvement of T forecast skill in lower strato:

Anomaly	Correlation,	N.H.	(20°N-90°N),	20030811	- 20030905

Ozone-radiation	impact	on	NWP	



--- BIRA  --- LINOZ   ---- FK

Temperature (K)

50 hPa

(NH)

Ozone (ppmv) 

50 hPa

(NH)

___ RMSE

----- BIAS

Forecast	verification	
against	analyses
BIRA:		Comprehensive	
chemistry
LINOZ:	Linearized	chemistry
FK	:	Ozone	zonal	monthly	
climatology
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We	have	improvement	 	50	hPa and	higher	up.		But	lower	down
at	100	hPa - the	reverse	is	observed

No	clear	why?		MIPAS	observations	at	100	hPa ?
or	other		radiative	processes	/	cancellation	of	errors		?

Forecast	verification	against	analyses
BIRA:		Comprehensive	chemistry
LINOZ:	Linearized	chemistry
FK	:	Ozone	zonal	monthly	climatology



CH4 O3

N2O Together
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Limb observations	 from MIPAS			/		Using		1x1° Canadian	NWP	GEM	model	

Tracer-wind	using	4D	Var in	an	NWP	model	



Wind	increments	from	TOVS	and	chemical	species	are	of	comparable	magnitude	
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O-P	temperature	time	series	between	RAOBS	and	the	3D-Var	(blue)	and	
4D-var	(red)	assimilation	cycles	at	20	hPa in	the	North	Hemisphere.

Temperature	bias	that	increases	with	time

Important	to	have	a	good	meteorological	model

Problem	with	the	stratospheric	experimental	version	of	the	model	GEM	
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Difference	between	the	wind	vector	intensity	of	the	analyses	
obtained	 from	two	assimilation	cycles	done	with	and	without	 the	
assimilation	of	ozone,	methane	and	nitrous	oxide.	The	results	are	
averaged	over	the	period	 from	August	15	to	October	5,	2003.	The	
zonal	mean	of	this	average	is	shown	here.
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Perspectives	on	stratospheric	applications

• Improving	the	CDA	methodology	is	needed	in	order	to	obtain	added-value
to	assimilation	products
- A	more	effective	use	of	obs can	be	achieved	by	improving	error	covariances
- Adding	retrieval	consistency	in	the	obs operator	(Kernels	or	ML	estimation)
- Quality	control	and	bias	correction		

• In	the	past	CDA	have	also	been	oversold	– e.g.	inferingunobserved	species
• Methodologies	based	on	CDA	are	being	developed	to	estimate

missing	processes	(e.g.	chemical	ozone	loss).	
• Coupling	with	NWP	remain	difficult	on	short	time	scales

o Ozone	–radiation	interaction	is	not	seen	to	be	positive	in	LS/UT	region	
o Tracer-wind.		Analysis	increment	on	winds	are	consistent	and	significant,	

but	may	develop	biases
• Radiative	impact	of	GH	species	on	seasonal	and	climatic	time	scales	maybe	

important
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The	end



Figure 10.4.4: Time series
of radiosonde observations
minus forecast (O-F) mean
temperature differences
(dashed) and standard
deviations (solid) for the
period Jan 1st to Feb 28th
2009 at 10, 30, 50 and 70
hPa in the tropics [20S-
20N]. Results from non-
interactive (blue) and
interactive (red) ensemble
ozone forecasts as in Figure
10.4.1.


